1,389 research outputs found

    Pacing behaviour development and acquisition: A systematic review

    Get PDF
    The goal-directed decision-making process of effort distribution (i.e. pacing) allows individuals to efficiently use energy resources as well as to manage the impact of fatigue on performance during exercise. Given the shared characteristics between pacing behaviour and other skilled behaviour, it was hypothesized that pacing behaviour would adhere to the same processes associated with skill acquisition and development. PubMed, Web of Science and PsycINFO databases between January 1995 and January 2022 were searched for articles relating to the pacing behaviour of individuals (1) younger than 18 years of age, or (2) repeatedly performing the same exercise task, or (3) with different levels of experience. The search resulted in 64 articles reporting on the effect of age (n = 33), repeated task exposure (n = 29) or differing levels of experience (n = 13) on pacing behaviour. Empirical evidence identifies the development of pacing behaviour starts during childhood (~ 10 years old) and continues throughout adolescence. This development is characterized by an increasingly better fit to the task demands, encompassing the task characteristics (e.g. duration) and environment factors (e.g. opponents). Gaining task experience leads to an increased capability to attain a predetermined pace and results in pacing behaviour that better fits task demands. Similar to skilled behaviour, physical maturation and cognitive development likely drive the development of pacing behaviour. Pacing behaviour follows established processes of skill acquisition, as repeated task execution improves the match between stimuli (e.g. task demands and afferent signals) and actions (i.e. continuing, increasing or decreasing the exerted effort) with the resulting exercise task performance. Furthermore, with increased task experience attentional capacity is freed for secondary tasks (e.g. incorporating opponents) and the goal selection is changed from achieving task completion to optimizing task performance. As the development and acquisition of pacing resemble that of other skills, established concepts in the literature (e.g. intervention-induced variability and augmented feedback) could enrich pacing research and be the basis for practical applications in physical education, healthcare, and sports. [Abstract copyright: © 2022. The Author(s).

    The relationship between members of the canonical NF-κB pathway, components of tumour microenvironment and survival in patients with invasive ductal breast cancer

    Get PDF
    The aim of the present study was to examine the relationship between tumour NF-κB activation, tumour microenvironment including local inflammatory response (LIR) and cancer-specific survival in patients with operable ductal breast cancer. Immunohistochemistry (tissue microarray of 376 patients) and western blotting (MCF7 and MDA-MB-231 breast cancer cells) was performed to assess expression of key members of the canonical NF-κB pathway (inhibitory kappa B kinase (IKKβ) and phosphorylated p65 Ser-536 (p-p65)). Following silencing of IKKβ, cell viability and apoptosis was assessed in both MCF7 and MDA-MB-231 cell lines. P-p65 was associated with cancer-specific survival (CSS) (nuclear P=0.042 and total P=0.025). High total p-p65 was associated with increase grade tumour grade (P=0.010), ER positivity (P=0.023), molecular subtype (P=0.005), lower Klintrup- Makinen grade (P=0.013) and decreased CD138 count (P=0.032). On multivariate analysis, total p-p65 expression independently associated with poorer CSS (P=0.020). In vitro work demonstrated that the canonical NF-κB pathway was inducible by exposure to TNFα in ER-positive MCF7 cells and to a lesser extent in ER-negative MDAMB- 231 cells. Reduction of IKKβ expression by siRNA transfection increased levels of apoptosis and reduced cell viability in both MCF7 (P= 0.001, P=0.002, respectively). This is consistent with the hypothesis that canonical IKKβ-NF-κB signalling drives tumour survival. These results suggest that activation of the canonical NF-κB pathway is an important determinant of poor outcome in patients with invasive ductal breast cancer

    The perception of time is slowed in response to exercise, an effect not further compounded by competitors: behavioral implications for exercise and health.

    Get PDF
    The theory of relativity postulates that time is relative to context and exercise seems such a situation. The purpose of this study was to examine whether situational factors such as perceived exertion and the introduction of an opponent influence competitors' perception of time. Thirty-three recreationally active adults (F = 16; M = 17) performed three standardized 4-km cycling trials in a randomized order. Velotron 3D software was used to create a visual, virtual environment representing (1) a solo time trial (FAM and SO), (2) a time trial with a passive opponent avatar (PO), and (3) a time trial with an opponent avatar and participant instruction to actively finish the trial before the opponent (AO). Participants were asked to estimate a 30-s time period using a standardized protocol for reproducibility before exercise at 500 m, 1500 m, 2500 m, and post exercise. Rate of perceived exertion (RPE) was measured throughout the trials. Exercise trials revealed that time was perceived to run "slow" compared to chronological time during exercise compared to resting and post-exercise measurements (p < 0.001). There was no difference between exercise conditions (SO, PO, and AO) or time points (500 m, 1500 m, and 2500 m). RPE increased throughout the trials. The results of this study demonstrate for the first time that exercise both with and without the influence of opponents influences time perception. This finding has important implications for healthy exercise choices and also for optimal performance. Independent of RPE, time was perceived to move slower during exercise, underpinning inaccurate pacing and decision-making across physical activities. [Abstract copyright: © 2024 The Authors. Brain and Behavior published by Wiley Periodicals LLC.

    Effects of Experience and Opponents on Pacing Behavior and 2-km Cycling Performance of Novice Youths

    Get PDF
    Purpose: To study the pacing behavior and performance of novice youth exercisers in a controlled laboratory setting. Method: Ten healthy participants (seven male, three female, 15.8 ± 1.0 years) completed four, 2-km trials on a Velotron cycling ergometer. Visit 1 was a familiarization trial. Visits 2 to 4 involved the following conditions, in randomized order: no opponent (NO), a virtual opponent (starting slow and finishing fast) (OP-SLOWFAST), and a virtual opponent (starting fast and finishing slow) (OP-FASTSLOW). Repeated measurement ANOVAs (p .05). Conclusion: Performance was improved by an increase in experience after one visit, parallel with the ability to anticipate future workload

    Quantitative analysis of regulatory flexibility under changing environmental conditions

    Get PDF
    The circadian clock controls 24-h rhythms in many biological processes, allowing appropriate timing of biological rhythms relative to dawn and dusk. Known clock circuits include multiple, interlocked feedback loops. Theory suggested that multiple loops contribute the flexibility for molecular rhythms to track multiple phases of the external cycle. Clear dawn- and dusk-tracking rhythms illustrate the flexibility of timing in Ipomoea nil. Molecular clock components in Arabidopsis thaliana showed complex, photoperiod-dependent regulation, which was analysed by comparison with three contrasting models. A simple, quantitative measure, Dusk Sensitivity, was introduced to compare the behaviour of clock models with varying loop complexity. Evening-expressed clock genes showed photoperiod-dependent dusk sensitivity, as predicted by the three-loop model, whereas the one- and two-loop models tracked dawn and dusk, respectively. Output genes for starch degradation achieved dusk-tracking expression through light regulation, rather than a dusk-tracking rhythm. Model analysis predicted which biochemical processes could be manipulated to extend dusk tracking. Our results reveal how an operating principle of biological regulators applies specifically to the plant circadian clock

    Low-temperature-specific effects of PHYTOCHROME C on the circadian clock in Arabidopsis suggest that PHYC underlies natural variation in biological timing

    Get PDF
    Author contributions KDE and AJM designed the study. FG characterised the gn7 deletion in the Scott lab (Figure 5a). PFD analysed PHY protein content in the gn7 line (Figure 5b). KDE performed all other experiments and data analysis. AJM assembled the data, removed them from Wenden et al. Plant Journal 2011 after peer review to comply with an editorial request for greater focus, and prepared this paper. Acknowledgements We are grateful to Rod Scott and the late Garry Whitelam for supporting early work on gn7, and to Dr. James Lynne (Horticulture Research International, Wellesbourne) for REML analysis.The circadian clock is a fundamental feature of gene regulation and cell physiology in eukaryotes and some prokaryotes, and an exemplar gene regulatory network in Systems Biology. The circadian system in Arabidopsis thaliana is complex in part due to its photo-transduction pathways. Analysis of natural genetic variation between Arabidopsis accessions Cape Verde Islands (Cvi-0) and Landsberg erecta (Ler) identified a major, temperature-specific Quantitative Trait Locus (QTL) on chromosome V that altered the circadian period of leaf movement (Edwards et al., Genetics, 2005). We tested Near-Isogenic Lines (NILs) to confirm that Ler alleles at this PerCv5c QTL lengthened the circadian period at 12°C, with little effect at higher temperatures. The PHYTOCHROME C gene lies within the QTL interval, and contains multiple sequence variants. Plants carrying either a T-DNA-insertion into PHYC or a deletion of PHYC also lengthened circadian period under white light, except at 27°C. phyB and phyABE mutants lengthened period only at 12°C. These results extend recent data showing PhyC effects in red light, confirming the number of photoreceptor proteins implicated in the plant circadian system at eleven. The connection between light input mechanisms and temperature effects on the clock is reinforced. Natural genetic variation within PHYC is likely to underlie the PerCv5c QTL. Our results suggest that functional variation within the PHYC-Ler haplotype group might contribute to the evolution of the circadian system and possibly to clock-related phenotypes such as flowering time. These results have previously passed peer-review, so we provide them in this citable preprint

    Automated registration of multimodal optic disc images: clinical assessment of alignment accuracy

    Get PDF
    Purpose: To determine the accuracy of automated alignment algorithms for the registration of optic disc images obtained by 2 different modalities: fundus photography and scanning laser tomography. Materials and Methods: Images obtained with the Heidelberg Retina Tomograph II and paired photographic optic disc images of 135 eyes were analyzed. Three state-of-the-art automated registration techniques Regional Mutual Information, rigid Feature Neighbourhood Mutual Information (FNMI), and nonrigid FNMI (NRFNMI) were used to align these image pairs. Alignment of each composite picture was assessed on a 5-point grading scale: “Fail” (no alignment of vessels with no vessel contact), “Weak” (vessels have slight contact), “Good” (vessels with 50% contact), and “Excellent” (complete alignment). Custom software generated an image mosaic in which the modalities were interleaved as a series of alternate 5×5-pixel blocks. These were graded independently by 3 clinically experienced observers. Results: A total of 810 image pairs were assessed. All 3 registration techniques achieved a score of “Good” or better in >95% of the image sets. NRFNMI had the highest percentage of “Excellent” (mean: 99.6%; range, 95.2% to 99.6%), followed by Regional Mutual Information (mean: 81.6%; range, 86.3% to 78.5%) and FNMI (mean: 73.1%; range, 85.2% to 54.4%). Conclusions: Automated registration of optic disc images by different modalities is a feasible option for clinical application. All 3 methods provided useful levels of alignment, but the NRFNMI technique consistently outperformed the others and is recommended as a practical approach to the automated registration of multimodal disc images

    Large-Eddy / Reynolds-Averaged Navier-Stokes Simulations of a Dual-Mode Scramjet Combustor

    Get PDF
    Numerical simulations of reacting and non-reacting flows within a scramjet combustor configuration experimentally mapped at the University of Virginia s Scramjet Combustion Facility (operating with Configuration A ) are described in this paper. Reynolds-Averaged Navier-Stokes (RANS) and hybrid Large Eddy Simulation / Reynolds-Averaged Navier-Stokes (LES / RANS) methods are utilized, with the intent of comparing essentially blind predictions with results from non-intrusive flow-field measurement methods including coherent anti-Stokes Raman spectroscopy (CARS), hydroxyl radical planar laser-induced fluorescence (OH-PLIF), stereoscopic particle image velocimetry (SPIV), wavelength modulation spectroscopy (WMS), and focusing Schlieren. NC State's REACTMB solver was used both for RANS and LES / RANS, along with a 9-species, 19- reaction H2-air kinetics mechanism by Jachimowski. Inviscid fluxes were evaluated using Edwards LDFSS flux-splitting scheme, and the Menter BSL turbulence model was utilized in both full-domain RANS simulations and as the unsteady RANS portion of the LES / RANS closure. Simulations were executed and compared with experiment at two equivalence ratios, PHI = 0.17 and PHI = 0.34. Results show that the PHI = 0.17 flame is hotter near the injector while the PHI = 0.34 flame is displaced further downstream in the combustor, though it is still anchored to the injector. Reactant mixing was predicted to be much better at the lower equivalence ratio. The LES / RANS model appears to predict lower overall heat release compared to RANS (at least for PHI = 0.17), and its capability to capture the direct effects of larger turbulent eddies leads to much better predictions of reactant mixing and combustion in the flame stabilization region downstream of the fuel injector. Numerical results from the LES/RANS model also show very good agreement with OH-PLIF and SPIV measurements. An un-damped long-wave oscillation of the pre-combustion shock train, which caused convergence problems in some RANS simulations, was also captured in LES / RANS simulations, which were able to accommodate its effects accurately
    corecore