885 research outputs found

    Nonlinear Control of Tunneling Through an Epsilon-Near-Zero Channel

    Full text link
    The epsilon-near-zero (ENZ) tunneling phenomenon allows full transmission of waves through a narrow channel even in the presence of a strong geometric mismatch. Here we experimentally demonstrate nonlinear control of the ENZ tunneling by an external field, as well as self-modulation of the transmission resonance due to the incident wave. Using a waveguide section near cut-off frequency as the ENZ system, we introduce a diode with tunable and nonlinear capacitance to demonstrate both of these effects. Our results confirm earlier theoretical ideas on using an ENZ channel for dielectric sensing, and their potential applications for tunable slow-light structures

    The Anti-Dipsogenic and Anti-Natriorexigenic Effects of Estradiol, but Not the Anti-Pressor Effect, Are Lost in Aged Female Rats

    Get PDF
    Estradiol (E2) inhibits fluid intake in several species, which may help to defend fluid homeostasis by preventing excessive extracellular fluid volume. Although this phenomenon is well established using the rat model, it has only been studied directly in young adults. Because aging influences the neuronal sensitivity to E2 and the fluid intake effects of E2 are mediated in the brain, we tested the hypothesis that aging influences the fluid intake effects of E2 in female rats. To do so, we examined water and NaCl intake in addition to the pressor effect after central angiotensin II treatment in young (3-4 months), middle-aged (10-12 months), and old (16-18 months) ovariectomized rats treated with estradiol benzoate (EB). As expected, EB treatment reduced water and NaCl intake in young rats. EB treatment, however, did not reduce water intake in old rats, nor did it reduce NaCl intake in middle-aged or old rats. The ability of EB to reduce blood pressure was, in contrast, observed in all three age groups. Next, we also measured the gene expression of estrogen receptors (ERs) and the angiotensin type 1 receptor (AT1R) in the areas of the brain that control fluid balance. ERÎČ, G protein estrogen receptor (GPER), and AT1R were reduced in the paraventricular nucleus of the hypothalamus in middle-aged and old rats, compared to young rats. These results suggest the estrogenic control of fluid intake is modified by age. Older animals lost the fluid intake effects of E2, which correlated with decreased ER and AT1R expression in the hypothalamus

    Nonlinear Control of Tunneling Through an Epsilon-Near-Zero Channel

    Get PDF
    The epsilon-near-zero (ENZ) tunneling phenomenon allows full transmission of waves through a narrow channel even in the presence of a strong geometric mismatch. Here we experimentally demonstrate nonlinear control of the ENZ tunneling by an external field, as well as self-modulation of the transmission resonance due to the incident wave. Using a waveguide section near cut-off frequency as the ENZ system, we introduce a diode with tunable and nonlinear capacitance to demonstrate both these effects. Our results confirm earlier theoretical ideas on using an ENZ channel for dielectric sensing and their potential applications for tunable slow-light structures

    The Crystal Structure of the Extracellular 11-heme Cytochrome UndA Reveals a Conserved 10-heme Motif and Defined Binding Site for Soluble Iron Chelates

    Get PDF
    Members of the genus Shewanella translocate deca- or undeca-heme cytochromes to the external cell surface thus enabling respiration using extracellular minerals and polynuclear Fe(III) chelates. The high resolution structure of the first undeca-heme outer membrane cytochrome, UndA, reveals a crossed heme chain with four potential electron ingress/egress sites arranged within four domains. Sequence and structural alignment of UndA and the deca-heme MtrF reveals the extra heme of UndA is inserted between MtrF hemes 6 and 7. The remaining UndA hemes can be superposed over the heme chain of the decaheme MtrF, suggesting that a ten heme core is conserved between outer membrane cytochromes. The UndA structure has also been crystallographically resolved in complex with substrates, an Fe(III)-nitrilotriacetate dimer or an Fe(III)-citrate trimer. The structural resolution of these UndA-Fe(III)-chelate complexes provides a rationale for previous kinetic measurements on UndA and other outer membrane cytochromes

    Interface Fluctuations under Shear

    Full text link
    Coarsening systems under uniform shear display a long time regime characterized by the presence of highly stretched and thin domains. The question then arises whether thermal fluctuations may actually destroy this layered structure. To address this problem in the case of non-conserved dynamics we study an anisotropic version of the Burgers equation, constructed to describe thermal fluctuations of an interface in the presence of a uniform shear flow. As a result, we find that stretched domains are only marginally stable against thermal fluctuations in d=2d=2, whereas they are stable in d=3d=3.Comment: 3 pages, shorter version, additional reference

    Landscape-Scale Effects of Habitat and Weather on Scaled Quail Populations

    Get PDF
    Scaled quail (Callipepla squamata) have declined over the last half century; however, there is spatial variation within their geographic distribution. Interior populations have increased and peripheral populations have generally decreased. Declines have been attributed to habitat loss and degradation. Scaled quail populations also show interannual fluctuations related to precipitation. Our objective was to determine the relative impact of habitat and weather (i.e., precipitation and temperature) on scaled quail population dynamics. Our hypothesis was that habitat metrics would be more important for decreasing populations whereas weather metrics would be more important for increasing populations. We used publicly available datasets for scaled quail abundance measures (Breeding Bird Survey, Christmas Bird Count), weather (PRISM), and land cover (National Land Cover Data) collected over 3 5-year time periods (1990–1994, 1999–2003, 2009–2013). Data were collected at 2 scales: a route scale (5-km route buffer) and region scale (25-km circular buffer). We developed 25 a priori models that fit into 4 “model classes” (habitat amount, habitat fragmentation, matrix quality, weather). Model selection followed a 2-stage approach, where models were initially evaluated within each individual model class, then top models from each class were evaluated in combination to determine a global model. We used mixed-effects models with a negative binomial response distribution, treating route as a random effect. Weather variables were the primary explanatory factor for increasing populations at both scales. Similarly following our hypothesis, habitat variables were generally the most important for decreasing populations, but only at the route scale; weather variables dominated at the region scale. Both abundance datasets provided similar results and explanatory power (R2 ≈ 0.10 for route scale; R2 ≈ 0.27 for region scale), for both increasing and decreasing populations. Comparisons of land cover variables showed increasing populations to have higher amounts of habitat (p = 0.0028), higher mean patch area of habitat (p = 0.0446), and lower urban cover (p = 0.0287). Our hypothesis that weather variables account for more variation of increasing scaled quail populations was generally supported, likely because of increased amounts of habitat in these areas. However, given the low overall explanatory power of our models, it is likely that other factors such as habitat quality may be more important to scaled quail. Increasing temperature and reduced precipitation associated with climate change are likely to exacerbate scaled quail declines both directly and through continued habitat degradation, even within areas with increasing populations

    Reply to Comment on ``Asymptotic Scaling in the Two-Dimensional O(3) sigma-Model at Correlation Length 10^5"

    Get PDF
    We reply to criticism by Patrascioiu and Seiler [hep-lat/9502019] of our results [Phys. Rev. Lett. 75, 1891 (1995), hep-lat/9411009] on asymptotic scaling in the two-dimensional O(3)O(3) σ\sigma-model, which were based on a finite-size-scaling extrapolation method.Comment: Postscript file avalaible at http://www1.le.infn.it:8080/~caraccio/96.htm

    New Universality Classes for Two-Dimensional σ\sigma-Models

    Full text link
    We argue that the two-dimensional O(N)O(N)-invariant lattice σ\sigma-model with mixed isovector/isotensor action has a one-parameter family of nontrivial continuum limits, only one of which is the continuum σ\sigma-model constructed by conventional perturbation theory. We test the proposed scenario with a high-precision Monte Carlo simulation for N=3,4N=3,4 on lattices up to 512×512512 \times 512, using a Wolff-type embedding algorithm. [CPU time ≈\approx 7 years IBM RS-6000/320H] The finite-size-scaling data confirm the existence of the predicted new family of continuum limits. In particular, the RPN−1RP^{N-1} and NN-vector models do not lie in the same universality class.Comment: 10 pages (includes 2 figures), 211176 bytes Postscript, NYU-TH-93/07/03, IFUP-TH 34/9

    A General Limitation on Monte Carlo Algorithms of Metropolis Type

    Full text link
    We prove that for any Monte Carlo algorithm of Metropolis type, the autocorrelation time of a suitable ``energy''-like observable is bounded below by a multiple of the corresponding ``specific heat''. This bound does not depend on whether the proposed moves are local or non-local; it depends only on the distance between the desired probability distribution π\pi and the probability distribution π(0)\pi^{(0)} for which the proposal matrix satisfies detailed balance. We show, with several examples, that this result is particularly powerful when applied to non-local algorithms.Comment: 8 pages, LaTeX plus subeqnarray.sty (included at end), NYU-TH-93/07/01, IFUP-TH33/9
    • 

    corecore