111 research outputs found

    Nuclear expression of Lyn, a Src family kinase member, is associated with poor prognosis in renal cancer patients

    Get PDF
    Background: 8000 cases of renal cancer are diagnosed each year in the UK, with a five-year survival rate of 50 %. Treatment options are limited; a potential therapeutic target is the Src family kinases (SFKs). SFKs have roles in multiple oncogenic processes and promote metastases in solid tumours. The aim of this study was to investigate SFKs as potential therapeutic targets for clear cell renal cell carcinoma (ccRCC). Methods: SFKs expression was assessed in a tissue microarray consisting of 192 ccRCC patients with full clinical follow-up. SFK inhibitors, dasatinib and saracatinib, were assessed in early ccRCC cell lines, 786-O and 769-P and a metastatic ccRCC cell line, ACHN (± Src) for effects on protein expression, apoptosis, proliferation and wound healing. Results: High nuclear expression of Lyn and the downstream marker of activation, paxillin, were associated with decreased patient survival. Conversely, high cytoplasmic expression of other SFK members and downstream marker of activation, focal adhesion kinase (FAK) were associated with increased patient survival. Treatment of non-metastatic 786-O and 769-P cells with dasatinib, dose dependently reduced SFK activation, shown via SFK (Y419) and FAK (Y861) phosphorylation, with no effect in metastatic ACHN cells. Dasatinib also increased apoptosis, while decreasing proliferation and migration in 786-O and 769-P cell lines, both in the presence and absence of Src protein. Conclusions: Our data suggests that nuclear Lyn is a potential therapeutic target for ccRCC and dasatinib affects cellular functions associated with cancer progression via a Src kinase independent mechanism

    Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific

    Get PDF
    Early research into coral reproductive biology suggested that spawning synchrony was driven by variations in the amplitude of environmental variables that are correlated with latitude, with synchrony predicted to break down at lower latitudes. More recent research has revealed that synchronous spawning, both within and among species, is a feature of all speciose coral assemblages, including equatorial reefs. Nonetheless, considerable variation in reproductive synchrony exists among locations and the hypothesis that the extent of spawning synchrony is correlated with latitude has not been formally tested on a large scale. Here, we use data from 90 sites throughout the Indo-Pacific and a quantitative index of reproductive synchrony applied at a monthly scale to demonstrate that, despite considerable spatial and temporal variation, there is no correlation between latitude and reproductive synchrony. Considering the critical role that successful reproduction plays in the persistence and recovery of coral reefs, research is urgently needed to understand the drivers underpinning variation in reproductive synchrony

    Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific

    Get PDF
    Early research into coral reproductive biology suggested that spawning synchrony was driven by variations in the amplitude of environmental variables that are correlated with latitude, with synchrony predicted to break down at lower latitudes. More recent research has revealed that synchronous spawning, both within and among species, is a feature of all speciose coral assemblages, including equatorial reefs. Nonetheless, considerable variation in reproductive synchrony exists among locations and the hypothesis that the extent of spawning synchrony is correlated with latitude has not been formally tested on a large scale. Here, we use data from 90 sites throughout the Indo-Pacific and a quantitative index of reproductive synchrony applied at a monthly scale to demonstrate that, despite considerable spatial and temporal variation, there is no correlation between latitude and reproductive synchrony. Considering the critical role that successful reproduction plays in the persistence and recovery of coral reefs, research is urgently needed to understand the drivers underpinning variation in reproductive synchrony

    If You Build It, Will They Come? Exploring Enhancements to Artificial Structure for Use in Restoration and Mitigation Applications

    Get PDF
    A study involving standardized artificial reef modules (ReefballsTM) was conducted in Puerto Morelos, Mexico. The purpose was to explore the use of artificial structure in restoration and mitigation projects in a Caribbean coral reef environment similar to South Florida by applying select experimental treatments hypothesized to accelerate their acquisition of a natural coral reef assemblage. Multiple hypotheses on the progression and interaction between artificial structure and the resulting fish, coral, algal, and non‐coral invertebrate assemblages were examined. Each of 40 reefball modules received one of 4 treatments (10 modules/treatment): invertebrate substrate pads, coral transplants, settlement plates, or control. Following deployment, monitoring trips were made on a bi‐annual basis for 3 years to assess the development of the biotic assemblages, with a final trip made 6 years post‐deployment. At each module divers conducted non‐destructive visual counts of fishes to obtain data on total abundance, species richness, size classes, and assemblage structure. Other monitoring work included coral recruitment surveys, invertebrate substrate pad collections, and digital imaging of coral transplants and benthic quadrats. Seasonal variation and patterns of succession were observed. In general there were no significant differences between experimental treatments and controls

    NeuroMeasure: A Software Package for Quantification of Cortical Motor Maps Using Frameless Stereotaxic Transcranial Magnetic Stimulation

    Full text link
    The recent enhanced sophistication of non-invasive mapping of the human motor cortex using MRI-guided Transcranial Magnetic Stimulation (TMS) techniques, has not been matched by refinement of methods for generating maps from motor evoked potential (MEP) data, or in quantifying map features. This is despite continued interest in understanding cortical reorganization for natural adaptive processes such as skill learning, or in the case of motor recovery, such as after lesion affecting the corticospinal system. With the observation that TMS-MEP map calculation and quantification methods vary, and that no readily available commercial or free software exists, we sought to establish and make freely available a comprehensive software package that advances existing methods, and could be helpful to scientists and clinician-researchers. Therefore, we developed NeuroMeasure, an open source interactive software application for the analysis of TMS motor cortex mapping data collected from Nexstim® and BrainSight®, two commonly used neuronavigation platforms. NeuroMeasure features four key innovations designed to improvemotor mapping analysis: de-dimensionalization of the mapping data, fitting a predictive model, reporting measurements to characterize the motor map, and comparing those measurements between datasets. This software provides a powerful and easy to use workflow for characterizing and comparing motor maps generated with neuronavigated TMS. The software can be downloaded on our github page: https://github.com/EdwardsLabNeuroSci/NeuroMeasure. AIM This paper aims to describe a software platform for quantifying and comparing maps of the human primarymotor cortex, using neuronavigated transcranialmagnetic stimulation, for the purpose of studying brain plasticity in health and diseas

    Neuromeasure: A software package for quantification of cortical motor maps using frameless stereotaxic transcranial magnetic stimulation

    Get PDF
    The recent enhanced sophistication of non-invasive mapping of the human motor cortex using MRI-guided Transcranial Magnetic Stimulation (TMS) techniques, has not been matched by refinement of methods for generating maps from motor evoked potential (MEP) data, or in quantifying map features. This is despite continued interest in understanding cortical reorganization for natural adaptive processes such as skill learning, or in the case of motor recovery, such as after lesion affecting the corticospinal system. With the observation that TMS-MEP map calculation and quantification methods vary, and that no readily available commercial or free software exists, we sought to establish and make freely available a comprehensive software package that advances existing methods, and could be helpful to scientists and clinician-researchers. Therefore, we developed NeuroMeasure, an open source interactive software application for the analysis of TMS motor cortex mapping data collected from Nexstim® and BrainSight®, two commonly used neuronavigation platforms. NeuroMeasure features four key innovations designed to improve motor mapping analysis: de-dimensionalization of the mapping data, fitting a predictive model, reporting measurements to characterize the motor map, and comparing those measurements between datasets. This software provides a powerful and easy to use workflow for characterizing and comparing motor maps generated with neuronavigated TMS. The software can be downloaded on our github page: https://github.com/EdwardsLabNeuroSci/NeuroMeasure Aim This paper aims to describe a software platform for quantifying and comparing maps of the human primary motor cortex, using neuronavigated transcranial magnetic stimulation, for the purpose of studying brain plasticity in health and disease

    Fine-Tuning Heat Stress Algorithms to Optimise Global Predictions of Mass Coral Bleaching

    Get PDF
    Increasingly intense marine heatwaves threaten the persistence of many marine ecosystems. Heat stress-mediated episodes of mass coral bleaching have led to catastrophic coral mortality globally. Remotely monitoring and forecasting such biotic responses to heat stress is key for effective marine ecosystem management. The Degree Heating Week (DHW) metric, designed to monitor coral bleaching risk, reflects the duration and intensity of heat stress events and is computed by accumulating SST anomalies (HotSpot) relative to a stress threshold over a 12-week moving window. Despite significant improvements in the underlying SST datasets, corresponding revisions of the HotSpot threshold and accumulation window are still lacking. Here, we fine-tune the operational DHW algorithm to optimise coral bleaching predictions using the 5 km satellite-based SSTs (CoralTemp v3.1) and a global coral bleaching dataset (37,871 observations, National Oceanic and Atmospheric Administration). After developing 234 test DHW algorithms with different combinations of the HotSpot threshold and accumulation window, we compared their bleaching prediction ability using spatiotemporal Bayesian hierarchical models and sensitivity–specificity analyses. Peak DHW performance was reached using HotSpot thresholds less than or equal to the maximum of monthly means SST climatology (MMM) and accumulation windows of 4–8 weeks. This new configuration correctly predicted up to an additional 310 bleaching observations globally compared to the operational DHW algorithm, an improved hit rate of 7.9%. Given the detrimental impacts of marine heatwaves across ecosystems, heat stress algorithms could also be fine-tuned for other biological systems, improving scientific accuracy, and enabling ecosystem governance

    Mangroves enhance the biomass of coral reef fish communities in the Caribbean

    Get PDF
    Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs
    corecore