81 research outputs found

    Bend-insensitive Fiber Optic Ultrasonic Tracking Probe for Cardiovascular Interventions

    Get PDF
    Background: Transesophageal echocardiography (TEE) is widely used to guide medical device placement in minimally invasive cardiovascular procedures. However, visualization of the device tip with TEE can be challenging. Ultrasonic tracking, enabled by an integrated fiber optic ultrasound sensor (FOUS) that receives transmissions from the TEE probe, is very well suited to improving device localization in this context. The problem addressed in this study is that tight deflections of devices such as a steerable guide catheter can result in bending of the FOUS beyond its specifications and a corresponding loss of ultrasound sensitivity. Purpose: A bend-insensitive FOUS was developed, and its utility with ultrasonic tracking of a steerable tip during TEE-based image guidance was demonstrated. Methods: Fiberoptic ultrasound sensors were fabricated using both standard and bend insensitive single mode fibers and subjected to static bending at the distal end. The interference transfer function and ultrasound sensitivities were compared for both types of FOUS. The bend-insensitive FOUS was integrated within a steerable guide catheter, which served as an exemplar device; the signal-to-noise ratio (SNR) of tracking signals from the catheter tip with a straight and a fully deflected distal end were measured in a cardiac ultrasound phantom for over 100 frames. Results: With tight bending at the distal end (bend radius < 10 mm), the standard FOUS experienced a complete loss of US sensitivity due to high attenuation in the fiber, whereas the bend-insensitive FOUS had largely unchanged performance, with a SNR of 47.7 for straight fiber and a SNR of 36.8 at a bend radius of 3.0 mm. When integrated into the steerable guide catheter, the mean SNRs of the ultrasonic tracking signals recorded with the catheter in a cardiac phantom were similar for straight and fully deflected distal ends: 195 and 163. Conclusion: The FOUS fabricated from bend-insensitive fiber overcomes the bend restrictions associated with the FOUS fabricated from standard single mode fiber, thereby enabling its use in ultrasonic tracking in a wide range of cardiovascular devices

    Optical Ultrasound Imaging for Endovascular Repair of Abdominal Aortic Aneurysms:A Pilot Study

    Get PDF
    An abdominal aortic aneurysm (AAA) is a persistent localized dilatation of the aorta to more than 1.5 times the expected diameter, which may lead to rupture with resultant high mortality. Endovascular repair (EVAR) of AAAs is a minimally invasive procedure that involves the peripheral delivery of one or more covered endografts to the aneurysmal segment, via a catheter-based system. A particularly challenging group of patients to treat are those in which the aneurysmal sac extends proximally to include the origin of the renal arteries (15% of all AAAs). To maintain the patency of renal side branches in these “complex” cases, in situ fenestration (ISF) of endografts during AAA procedures has been proposed. The challenges addressed in this study were a) to develop an endovascular imaging system for visualizing side branches beyond deployed endografts and thereby to determine the locations for ISF; b) to obtain an initial assessment of the clinical utility of this system. Here, all-optical ultrasound (OpUS) imaging with a fiber optic transducer was used for real-time guidance, wherein ultrasonic pulses are generated in nanocomposite coatings via the photoacoustic effect and received optically using a Fabry-Perot cavity. These custom OpUS transducer components were integrated into a steerable sheath (6 Fr) that also included a separate optical fiber for delivering laser pulses for fenestrating the endograft. In an ex-vivo model, it was shown that OpUS imaging extended through the endograft and underlying aortic tissue, and permitted aortic side-branch visualization. During an EVAR procedure in a porcine model in vivo, an aortic side branch was visualized with OpUS imaging after the endograft was deployed and optical fenestration of the stent graft was successfully performed. This study showed that OpUS is a promising modality for guiding EVAR and could find particularly utility with identifying aortic side branches for ISF during treatment of complex AAAs

    Breath Formate Is a Marker of Airway S-Nitrosothiol Depletion in Severe Asthma

    Get PDF
    -nitrosothiols (SNOs), a class of endogenous airway smooth muscle relaxants. This deficiency results from increased activity of an enzyme that both reduces SNOs to ammonia and oxidizes formaldehyde to formic acid, a volatile carboxylic acid that is more easily detected in exhaled breath condensate (EBC) than SNOs. We therefore hypothesize that depletion of airway SNOs is related to asthma pathology, and breath formate concentration may be a proxy measure of SNO catabolism. (r = −0.39, p = 0.002, asthmatics only), and positively correlated with the NO-derived ion nitrite (r = 0.46, p<0.0001) as well as with total serum IgE (r = 0.28, p = 0.016, asthmatics only). Furthermore, formate was not significantly correlated with other volatile organic acids nor with inhaled corticosteroid dose.-nitrosothiols

    Perceptual and conceptual processing of visual objects across the adult lifespan

    Get PDF
    Abstract: Making sense of the external world is vital for multiple domains of cognition, and so it is crucial that object recognition is maintained across the lifespan. We investigated age differences in perceptual and conceptual processing of visual objects in a population-derived sample of 85 healthy adults (24–87 years old) by relating measures of object processing to cognition across the lifespan. Magnetoencephalography (MEG) was recorded during a picture naming task to provide a direct measure of neural activity, that is not confounded by age-related vascular changes. Multiple linear regression was used to estimate neural responsivity for each individual, namely the capacity to represent visual or semantic information relating to the pictures. We find that the capacity to represent semantic information is linked to higher naming accuracy, a measure of task-specific performance. In mature adults, the capacity to represent semantic information also correlated with higher levels of fluid intelligence, reflecting domain-general performance. In contrast, the latency of visual processing did not relate to measures of cognition. These results indicate that neural responsivity measures relate to naming accuracy and fluid intelligence. We propose that maintaining neural responsivity in older age confers benefits in task-related and domain-general cognitive processes, supporting the brain maintenance view of healthy cognitive ageing

    Poorer White Matter Microstructure Predicts Slower and More Variable Reaction Time Performance: Evidence for a Neural Noise Hypothesis in a Large Lifespan Cohort

    Get PDF
    Most prior research has focused on characterizing averages in cognition, brain characteristics, or behavior, and attempting to predict differences in these averages among individuals. However, this overwhelming focus on mean levels may leave us with an incomplete picture of what drives individual differences in behavioral phenotypes by ignoring the variability of behavior around an individual's mean. In particular, enhanced white matter (WM) structural microstructure has been hypothesized to support consistent behavioral performance by decreasing Gaussian noise in signal transfer. Conversely, lower indices of WM microstructure are associated with greater within-subject variance in the ability to deploy performance-related resources, especially in clinical populations. We tested a mechanistic account of the “neural noise” hypothesis in a large adult lifespan cohort (Cambridge Centre for Ageing and Neuroscience) with over 2500 adults (ages 18-102; 1508 female; 1173 male; 2681 behavioral sessions; 708 MRI scans) using WM fractional anisotropy to predict mean levels and variability in reaction time performance on a simple behavioral task using a dynamic structural equation model. By modeling robust and reliable individual differences in within-person variability, we found support for a neural noise hypothesis (Kail, 1997), with lower fractional anisotropy predicted individual differences in separable components of behavioral performance estimated using dynamic structural equation model, including slower mean responses and increased variability. These effects remained when including age, suggesting consistent effects of WM microstructure across the adult lifespan unique from concurrent effects of aging. Crucially, we show that variability can be reliably separated from mean performance using advanced modeling tools, enabling tests of distinct hypotheses for each component of performance

    Distinct components of cardiovascular health are linked with age-related differences in cognitive abilities

    Get PDF
    Cardiovascular ageing contributes to cognitive impairment. However, the unique and synergistic contributions of multiple cardiovascular factors to cognitive function remain unclear because they are often condensed into a single composite score or examined in isolation. We hypothesized that vascular risk factors, electrocardiographic features and blood pressure indices reveal multiple latent vascular factors, with independent contributions to cognition. In a population-based deep-phenotyping study (n = 708, age 18–88), path analysis revealed three latent vascular factors dissociating the autonomic nervous system response from two components of blood pressure. These three factors made unique and additive contributions to the variability in crystallized and fluid intelligence. The discrepancy in fluid relative to crystallized intelligence, indicative of cognitive decline, was associated with a latent vascular factor predominantly expressing pulse pressure. This suggests that higher pulse pressure is associated with cognitive decline from expected performance. The effect was stronger in older adults. Controlling pulse pressure may help to preserve cognition, particularly in older adults. Our findings highlight the need to better understand the multifactorial nature of vascular aging

    Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits

    Get PDF
    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group.The control of voluntary movement changes markedly with age. A critical component of motor control is the integration of sensory information with predictions of the consequences of action, arising from internal models of movement. This leads to sensorimotor attenuation – a reduction in the perceived intensity of sensations from self-generated compared to external actions. Here we show that sensorimotor attenuation occurs in 98% of adults in a population-based cohort (n=325; 18-88 years; the Cambridge Centre for Ageing and Neuroscience). Importantly, attenuation increases with age, in proportion to reduced sensory sensitivity. This effect is associated with differences in the structure and functional connectivity of the pre-supplementary motor area (pre-SMA), assessed with magnetic resonance imaging. The results suggest that ageing alters the balance between the sensorium and predictive models, mediated by the pre-SMA and its connectivity in frontostriatal circuits. This shift may contribute to the motor and cognitive changes observed with age.Cam-CAN research was supported by the Biotechnology and Biological Sciences Research Council (BB/H008217/1). JBR and NW were supported by the James S. McDonnell Foundation 21st Century Science Initiative, Scholar Award in Understanding Human Cognition. JBR was also supported by Wellcome Trust [103838] and the Medical Research Council [MC-A060-5PQ30]. DMW was supported by the Wellcome Trust [097803], Human Frontier Science Program and the Royal Society Noreen Murray Professorship in Neurobiology. RNH was supported by the Medical Research Council [MC-A060-5PR10]. RAK was supported by a Sir Henry Wellcome Trust Postdoctoral Fellowship [107392]. LG was funded by a Rubicon grant from the Netherlands Organisation for Scientific Research (NWO)

    Cardiovascular Risk Factors and MRI Markers of Cerebral Small Vessel Disease

    Get PDF
    Background and objectives: Cardiovascular risk factors have been implicated in the etiology of cerebral small vessel disease (CSVD); however, whether the associations are causal remains unclear in part due to the susceptibility of observational studies to reverse causation and confounding. Here, we use mendelian randomization (MR) to determine which cardiovascular risk factors are likely to be involved in the etiology of CSVD. Methods: We used data from large-scale genome-wide association studies of European ancestry to identify genetic proxies for blood pressure, blood lipids, body mass index (BMI), type 2 diabetes, smoking initiation, cigarettes per day, and alcohol consumption. MR was performed to assess their association with 3 neuroimaging features that are altered in CSVD (white matter hyperintensities [WMH], fractional anisotropy [FA], and mean diffusivity [MD]) using genetic summary data from the UK Biobank (N = 31,855). Our primary analysis used inverse-weighted median MR, with validation using weighted median, MR-Egger, and a pleiotropy-minimizing approach. Finally, multivariable MR was performed to study the effects of multiple risk factors jointly. Results: MR analysis showed consistent associations across all methods for higher genetically proxied systolic and diastolic blood pressures with WMH, FA, and MD and for higher genetically proxied BMI with WMH. There was weaker evidence for associations between total cholesterol, low-density lipoprotein, smoking initiation, pulse pressure, and type 2 diabetes liability and at least 1 CSVD imaging feature, but these associations were not reproducible across all validation methods used. Multivariable MR analysis for blood pressure traits found that the effect was primarily through genetically proxied diastolic blood pressure across all CSVD traits. Discussion: Genetic predisposition to higher blood pressure, primarily diastolic blood pressure, and to higher BMI is associated with a higher burden of CSVD, suggesting a causal role. Improved management and treatment of these risk factors could reduce the burden of CSVD

    A Meta-analysis of Gene Expression Signatures of Blood Pressure and Hypertension

    Get PDF
    Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p&lt;0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%–9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension
    corecore