77 research outputs found
Recommended from our members
Genotyping Analyses of Tuberculosis Cases in U.S.- and Foreign-Born Massachusetts Residents
We used molecular genotyping to further understand the epidemiology and transmission patterns of tuberculosis (TB) in Massachusetts. The study population included 983 TB patients whose cases were verified by the Massachusetts Department of Public Health between July 1, 1996, and December 31, 2000, and for whom genotyping results and information on country of origin were available. Two hundred seventy-two (28%) of TB patients were in genetic clusters, and isolates from U.S-born were twice as likely to cluster as those of foreign-born (odds ratio [OR] 2.29, 95% confidence interval [CI] 1.69, 3.12). Our results suggest that restriction fragment length polymorphism analysis has limited capacity to differentiate TB strains when the isolate contains six or fewer copies of IS6110, even with spoligotyping. Clusters of TB patients with more than six copies of IS6110 were more likely to have epidemiologic connections than were clusters of TB patients with isolates with few copies of IS6110 (OR 8.01, 95%; CI 3.45,18.93)
Designing and Evaluating Interventions to Halt the Transmission of Tuberculosis.
To reduce the incidence of tuberculosis, it is insufficient to simply understand the dynamics of tuberculosis transmission. Rather, we must design and rigorously evaluate interventions to halt transmission, prioritizing those interventions most likely to achieve population-level impact. Synergy in reducing tuberculosis transmission may be attainable by combining interventions that shrink the reservoir of latent Mycobacterium tuberculosis infection (preventive therapy), shorten the time between disease onset and treatment initiation (case finding and diagnosis), and prevent transmission in key settings, such as the built environment (infection control). In evaluating efficacy and estimating population-level impact, cluster-randomized trials and mechanistic models play particularly prominent roles. Historical and contemporary evidence suggests that effective public health interventions can halt tuberculosis transmission, but an evidence-based approach based on knowledge of local epidemiology is necessary for success. We provide a roadmap for designing, evaluating, and modeling interventions to interrupt the process of transmission that fuels a diverse array of tuberculosis epidemics worldwide
Genotyping Analyses of Tuberculosis Cases in U.S.- and Foreign-Born Massachusetts Residents
We used molecular genotyping to further understand the epidemiology and transmission patterns of tuberculosis (TB) in Massachusetts. The study population included 983 TB patients whose cases were verified by the Massachusetts Department of Public Health between July 1, 1996, and December 31, 2000, and for whom genotyping results and information on country of origin were available. Two hundred seventy-two (28%) of TB patients were in genetic clusters, and isolates from U.S-born were twice as likely to cluster as those of foreign-born (odds ratio [OR] 2.29, 95% confidence interval [CI] 1.69, 3.12). Our results suggest that restriction fragment length polymorphism analysis has limited capacity to differentiate TB strains when the isolate contains six or fewer copies of IS6110, even with spoligotyping. Clusters of TB patients with more than six copies of IS6110 were more likely to have epidemiologic connections than were clusters of TB patients with isolates with few copies of IS6110 (OR 8.01, 95%; CI 3.45,18.93)
The antimicrobial effect of colistin methanesulfonate on Mycobacterium tuberculosis in vitro
Polymyxins have previously been described to have activity against M. tuberculosis
(MTB), but further research was abandoned due to systemic toxicity concerns to
achieve the required MIC. Colistin methanesulfonate (CMS), a polymyxin, is well
tolerated when inhaled directly into the lungs, resulting in high local concentrations.
We report here for the first time, MIC and MBC data for CMS determined by the
microtiter Alamar Blue assay (MABA). We also determined how the MIC would be
affected by the presence of pulmonary surfactant (PS) and if any synergy with isoniazid (INH) and rifampicin (RIF) exists. The effect of CMS on the ultrastructure
of MTB was also determined. The MIC for CMS was 16 mg/L, while the MBC was
256 mg/L. MIC for CMS in PS was antagonised by eight fold. For synergy,
indifference was determined while time-kill assays revealed a greater killing effect
when CMS was used together with INH. Ultrastructure analysis suggests that the
disruption of the outer polysaccharide layer of MTB by CMS may lead to enhanced
uptake of INH. Our findings may provide insight for further investigations of CMS
against MTB.http://intl.elsevierhealth.com/journals/tube2016-07-30hb201
Phase I, Single-Dose, Dose-Escalating Study of Inhaled Dry Powder Capreomycin: a New Approach to Therapy of Drug-Resistant Tuberculosis
ABSTRACT Multidrug-resistant tuberculosis (MDR-TB) threatens global TB control. The lengthy treatment includes one of the injectable drugs kanamycin, amikacin, and capreomycin, usually for the first 6 months. These drugs have potentially serious toxicities, and when given as intramuscular injections, dosing can be painful. Advances in particulate drug delivery have led to the formulation of capreomycin as the first antituberculosis drug available as a microparticle dry powder for inhalation and clinical study. Delivery by aerosol may result in successful treatment with lower doses. Here we report a phase I, single-dose, dose-escalating study aimed at demonstrating safety and tolerability in healthy subjects and measuring pharmacokinetic (PK) parameters. Twenty healthy adults ( n = 5 per group) were recruited to self-administer a single dose of inhaled dry powder capreomycin (25-mg, 75-mg, 150-mg, or 300-mg nominal dose) using a simple, handheld delivery device. Inhalations were well tolerated by all subjects. The most common adverse event was mild to moderate transient cough, in five subjects. There were no changes in lung function, audiometry, or laboratory parameters. Capreomycin was rapidly absorbed after inhalation. Systemic concentrations were detected in each dose group within 20 min. Peak and mean plasma concentrations of capreomycin were dose proportional. Serum concentrations exceeded 2 μg/ml (MIC for Mycobacterium tuberculosis ) following the highest dose; the half-life ( t 1/2 ) was 4.8 ± 1.0 h. A novel inhaled microparticle dry powder formulation of capreomycin was well tolerated. A single 300-mg dose rapidly achieved serum drug concentrations above the MIC for Mycobacterium tuberculosis , suggesting the potential of inhaled therapy as part of an MDR-TB treatment regimen
Air Disinfection with Germicidal Ultraviolet:For this Pandemic and the Next
Publisher PDFPeer reviewe
Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin : a new approach to therapy of drug-resistant tuberculosis
Multidrug-resistant tuberculosis (MDR-TB) threatens global TB control. The lengthy treatment includes one of the injectable drugs kanamycin, amikacin, and capreomycin, usually for the first 6 months. These drugs have potentially serious toxicities, and when given as intramuscular injections, dosing can be painful. Advances in particulate drug delivery have led to the formulation of capreomycin as the first antituberculosis drug available as a microparticle dry powder for inhalation and clinical study. Delivery by aerosol may result in successful treatment with lower doses. Here we report a phase I, single-dose, dose-escalating study aimed at demonstrating safety and tolerability in healthy subjects and measuring pharmacokinetic (PK) parameters. Twenty healthy adults (n = 5 per group) were recruited to self-administer a single dose of inhaled dry powder capreomycin (25-mg, 75-mg, 150-mg, or 300-mg nominal dose) using a simple, handheld delivery device. Inhalations were well tolerated by all subjects. The most common adverse event was mild to moderate transient cough, in five subjects. There were no changes in lung function, audiometry, or laboratory parameters. Capreomycin was rapidly absorbed after inhalation. Systemic concentrations were detected in each dose group within 20 min. Peak and mean plasma concentrations of capreomycin were dose proportional. Serum concentrations exceeded 2 μg/ml (MIC for Mycobacterium tuberculosis) following the highest dose; the half-life (t1/2) was 4.8 ± 1.0 h. A novel inhaled microparticle dry powder formulation of capreomycin was well tolerated. A single 300-mg dose rapidly achieved serum drug concentrations above the MIC for Mycobacterium tuberculosis, suggesting the potential of inhaled therapy as part of an MDR-TB treatment regimen.Gates Foundation.http://aac.asm.orghb2013ay201
Recommended from our members
Estimated Costs of False Laboratory Diagnoses of Tuberculosis in Three Patients
We estimated direct medical and nonmedical costs associated with a false diagnosis of tuberculosis (TB) caused by laboratory cross-contamination of Mycobacterium tuberculosis cultures in Massachusetts in 1998 and 1999. For three patients who received misdiagnoses of active TB disease on the basis of laboratory cross-contamination, the costs totaled U.S.10,873 (range, 21,306). Reducing laboratory cross-contamination and quickly identifying patients with cross-contaminated cultures can prevent unnecessary and potentially dangerous treatment regimens and anguish for the patient and financial burden to the health-care system
- …