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Editorial

Air Disinfection with Germicidal Ultraviolet: For this Pandemic and the
Next

Germicidal ultraviolet (GUV) air disinfection (also referred to as
Ultraviolet Germicidal Irradiation or “UVGI”), as a control
method for the transmission of airborne pathogens, has been
used for more than 80 years. In 1942, upper-room GUV (disin-
fecting the room air by irradiating the air space above head
height with air mixing) with 254 nm low-pressure mercury lamps
was used very effectively to reduce the transmission of measles
(the most infectious virus known) in two Philadelphia suburban
schools (1–4). More recently, in the 1980s, it was also common
to find UV luminaires in hospital emergency rooms, clinics,
waiting rooms and operating theaters, primarily due to a global
resurgence of drug-resistant tuberculosis (5). Unfortunately, inter-
est in UV air disinfection waned primarily because drugs and
vaccines became available for airborne bacterial and viral dis-
eases such as tuberculosis, measles, mumps and chicken pox (6).
However, research continued, leading to significant advances;
confirmation of the efficacy and safety of upper-room GUV, new
studies with ultraviolet radiation in the wavelength region 200 to
230 nm (dubbed “far-UVC”) and development of ultraviolet-C
(UVC) light-emitting diodes (LEDs).

It is clear that aerosols are an important, if not dominant,
route for SARS-CoV-2 transmission (7–11). Therefore, it is time
once again to implement GUV air disinfection, with upper-room
GUV still the most cost-effective way to disinfect large volumes
of room air as an effective and safe control measure when
installed properly and people are properly trained regarding its
use (12–15). Furthermore, whole room GUV with UVC wave-
lengths less than 230 nm shows great promise. GUV is a “be-
havior independent” control measure, meaning it does not rely
upon the behavior of people, for example, social distancing,
cough hygiene or mask wearing.

Due to its mode of action, damaging ubiquitous nucleic acids,
GUV can inactivate not just SARS-CoV-2 but also its mutated
variants and a wide-range of pathogens including drug-resistant
bacteria (16,17). For that reason, it is also likely to be effective
against the next pandemic, whatever the pathogen. As UV inacti-
vates pathogens by causing genetic mutations, concerns periodi-
cally arise that UV exposure could contribute to more infectious,
more pathogenic or more drug-resistant pathogens. However, it
is unchecked replication of virus in human populations, some-
thing which GUV is specifically designed to limit, that results in
far more mutations than external exposure to GUV.

However, appropriate deployment of GUV is critical. Whilst
upper-room GUV radiation is highly effective for air

disinfection, in contrast, walk-through UV portals and UV wands
are subject to much greater challenges for surface disinfection
and are also less likely to be effective. Marketing of such devices
is often exaggerated, supported with scant unpublished data on
safety and efficacy and, of course, they are not designed for tack-
ling airborne transmission, an important mode of Covid-19
spread. Much larger UV exposures are required and the realities
of the real world, such as macro and micro-shadows in materials
and absorption by dirt and oils, are barriers to GUV being the
primary surface disinfection technique. This has been known in
the healthcare community for some time, where UVC surface
decontamination is successfully deployed as an adjunct to man-
ual cleaning (18).

Implementation barriers for GUV include concern about the
adverse health effects from exposure, but this is only an issue
when the technology is misapplied. Upper-room GUV has been
shown to be safe when fixtures are well-designed, properly
installed, checked for safe exposure levels before being activated
and properly maintained. A major attraction of UVC wavelengths
below 230 nm is its frequently equivalent efficacy compare with
254 nm UVC but it is characterized by limited penetration in tis-
sue due to its shorter wavelength (19–21). This suggests that such
sources, exemplified by krypton chloride (KrCl) lamps, particu-
larly if modified to remove energy above 230 nm, can be used to
inactivate airborne microbes throughout occupied spaces while
not posing a health hazard to workers in the lower room (14,22–
24). Similarly, the limited penetration depth by 254 nm radiation
from low-pressure mercury GUV lamps will not pose a health
hazard if the in-room exposures are kept within safe levels (25).

Whilst it is undeniable that improved ventilation should be a
first-line measure, in a significant proportion of buildings or
transport vehicles, increasing ventilation effectiveness is not pos-
sible or is prohibitively expensive. Moreover, increasing ventila-
tion produces declining increments in protection at escalating
costs (26). In contrast, upper-room GUV systems are cost-effec-
tive and applicable to most settings with an effective ceiling
height of at least 2.3 meters. In rooms with low ceilings of less
than 2.3 meters, UVC wavelengths below 230 nm can be intro-
duced as one alternative. Whilst UVC systems emitting below
230 nm are currently expensive and have limited lamp life, both
these factors are likely to improve in the coming months and new
technologies, emitting at the relevant wavelengths, will emerge.

From our past extensive experience in GUV applications, we
support specific goals to resolve current safety concerns and
expedite implementation of available and appropriate technology
for GUV disinfection. They include:

1 Exploration and potential revision of exposure limits based
upon recent studies including those in this Symposium in
Print.
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2 Establishing guidelines and standards for the safe and effective
installation, deployment and maintenance of GUV.

3 Effective training of installers along with independent certifica-
tion of competent and compliant installation and maintenance
of GUV.

GUV is an important and underused infection control mea-
sure. The potential benefit to health and the economy from a
reduction in Covid-19 cases far outweighs risks of potential
adverse health effects. Within well-established exposure limits,
the risk of skin cancer and eye cataracts are vanishingly small, a
tiny fraction of the risk from everyday exposure to the more pen-
etrating ultraviolet-A and ultraviolet-B in sunlight (25). Overex-
posure to UVC is avoidable, but when it does occur, typically
results in mild skin redness or eye irritation. Research on upper-
room GUV and far-UVC will of course continue, but with the
unprecedented severity of COVID-19 on health and global econ-
omy, we already know more than enough about the safety and
efficacy of GUV to conclude that the benefit-risk balance is dra-
matically on the side of benefit.
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