42 research outputs found
Volcanic eruptions in the deep sea
Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 142–157, doi:10.5670/oceanog.2012.12.Volcanic eruptions are important events in Earth's cycle of magma generation and crustal construction. Over durations of hours to years, eruptions produce new deposits of lava and/or fragmentary ejecta, transfer heat and magmatic volatiles from Earth's interior to the overlying air or seawater, and significantly modify the landscape and perturb local ecosystems. Today and through most of geological history, the greatest number and volume of volcanic eruptions on Earth have occurred in the deep ocean along mid-ocean ridges, near subduction zones, on oceanic plateaus, and on thousands of mid-plate seamounts. However, deep-sea eruptions (> 500 m depth) are much more difficult to detect and observe than subaerial eruptions, so comparatively little is known about them. Great strides have been made in eruption detection, response speed, and observational detail since the first recognition of a deep submarine eruption at a mid-ocean ridge 25 years ago. Studies of ongoing or recent deep submarine eruptions reveal information about their sizes, durations, frequencies, styles, and environmental impacts. Ultimately, magma formation and accumulation in the upper mantle and crust, plus local tectonic stress fields, dictate when, where, and how often submarine eruptions occur, whereas eruption depth, magma composition, conditions of volatile segregation, and tectonic setting determine submarine eruption style.NSF-OCE 0937409 (KHR),
OCE-0525863 and OCE-0732366 (DJF
and SAS), 0725605 (WWC), OCE-
0751780 (ETB and RWE), OCE‐0138088
(MRP), OCE-0934278 (DAC),
OCE-0623649 (RPD), and a David and
Lucile Packard Foundation grant to
MBARI (DAC and DWC)
Recommended from our members
Volcanic Eruptions in the Deep Sea
Volcanic eruptions are important events in Earth’s cycle of magma generation and crustal construction. Over durations of hours to years, eruptions produce new deposits of lava and/or fragmentary ejecta, transfer heat and magmatic volatiles from Earth’s interior to the overlying air or seawater, and significantly modify the landscape and perturb local ecosystems. Today and through most of geological history, the greatest number and volume of volcanic eruptions on Earth have occurred in the deep ocean along mid-ocean ridges, near subduction zones, on oceanic plateaus, and on thousands of mid-plate seamounts. However, deep-sea eruptions (> 500 m depth) are much more difficult to detect and observe than subaerial eruptions, so comparatively little is known about them. Great strides have been made in eruption detection, response speed, and observational detail since the first recognition of a deep submarine eruption at a mid-ocean ridge 25 years ago. Studies of ongoing or recent deep submarine eruptions reveal information about their sizes, durations, frequencies, styles, and environmental impacts. Ultimately, magma formation and accumulation in the upper mantle and crust, plus local tectonic stress fields, dictate when, where, and how often submarine eruptions occur, whereas eruption depth, magma composition, conditions of volatile segregation, and tectonic setting determine submarine eruption style.Keywords: East Pacific rise,
Galapagos rift,
Axial volcano,
Mid-Atlantic ridge,
Lava-flow morphology,
Fuca ridge,
Northern cleft segment,
Hydrothermal activity,
Midocean ridg
Silymarin Ascending Multiple Oral Dosing Phase I Study in Noncirrhotic Patients With Chronic Hepatitis C
Silymarin, derived from the milk thistle plant Silybum marianum, is widely used for self-treatment of liver diseases, including hepatitis C virus (HCV), and its antiviral activity has been demonstrated in vitro and in HCV patients administered an intravenous formulation of the major silymarin flavonolignans, silybin A and silybin B. The safety and dose-exposure relationships of higher than customary oral doses of silymarin and its acute effects on serum HCV RNA were evaluated in noncirrhotic HCV patients. Four cohorts of 8 patients with well-compensated, chronic noncirrhotic HCV who failed interferon-based therapy were randomized 3:1 to silymarin or placebo. Oral doses of 140, 280, 560, or 700 mg silymarin were administered every 8 hours for 7 days. Steady-state exposures for silybin A and silybin B increased 11-fold and 38-fold, respectively, with a 5-fold increase in dose, suggesting nonlinear pharmacokinetics. No drug-related adverse events were reported, and no clinically meaningful reductions from baseline serum transaminases or HCV RNA titer were observed. Oral doses of silymarin up to 2.1 g per day were safe and well tolerated. The nonlinear pharmacokinetics of silybin A and silybin B suggests low bioavailability associated with customary doses of silymarin may be overcome with doses above 700 mg
SLUG/SNAI2 and Tumor Necrosis Factor Generate Breast Cells With CD44+/CD24- Phenotype
<p>Abstract</p> <p>Background</p> <p>Breast cancer cells with CD44+/CD24- cell surface marker expression profile are proposed as cancer stem cells (CSCs). Normal breast epithelial cells that are CD44+/CD24- express higher levels of stem/progenitor cell associated genes. We, amongst others, have shown that cancer cells that have undergone epithelial to mesenchymal transition (EMT) display the CD44+/CD24- phenotype. However, whether all genes that induce EMT confer the CD44+/CD24- phenotype is unknown. We hypothesized that only a subset of genes associated with EMT generates CD44+/CD24- cells.</p> <p>Methods</p> <p>MCF-10A breast epithelial cells, a subpopulation of which spontaneously acquire the CD44+/CD24- phenotype, were used to identify genes that are differentially expressed in CD44+/CD24- and CD44-/CD24+ cells. Ingenuity pathway analysis was performed to identify signaling networks that linked differentially expressed genes. Two EMT-associated genes elevated in CD44+/CD24- cells, SLUG and Gli-2, were overexpressed in the CD44-/CD24+ subpopulation of MCF-10A cells and MCF-7 cells, which are CD44-/CD24+. Flow cytometry and mammosphere assays were used to assess cell surface markers and stem cell-like properties, respectively.</p> <p>Results</p> <p>Two thousand thirty five genes were differentially expressed (p < 0.001, fold change ≥ 2) between the CD44+/CD24- and CD44-/CD24+ subpopulations of MCF-10A. Thirty-two EMT-associated genes including SLUG, Gli-2, ZEB-1, and ZEB-2 were expressed at higher levels in CD44+/CD24- cells. These EMT-associated genes participate in signaling networks comprising TGFβ, NF-κB, and human chorionic gonadotropin. Treatment with tumor necrosis factor (TNF), which induces NF-κB and represses E-cadherin, or overexpression of SLUG in CD44-/CD24+ MCF-10A cells, gave rise to a subpopulation of CD44+/CD24- cells. Overexpression of constitutively active p65 subunit of NF-κB in MCF-10A resulted in a dramatic shift to the CD44+/CD24+ phenotype. SLUG overexpression in MCF-7 cells generated CD44+/CD24+ cells with enhanced mammosphere forming ability. In contrast, Gli-2 failed to alter CD44 and CD24 expression.</p> <p>Conclusions</p> <p>EMT-mediated generation of CD44+/CD24- or CD44+/CD24+ cells depends on the genes that induce or are associated with EMT. Our studies reveal a role for TNF in altering the phenotype of breast CSC. Additionally, the CD44+/CD24+ phenotype, in the context of SLUG overexpression, can be associated with breast CSC "stemness" behavior based on mammosphere forming ability.</p
Role of genetic testing for inherited prostate cancer risk: Philadelphia prostate cancer consensus conference 2017
Purpose: Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-dri
The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study
AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
Management of patients with advanced prostate cancer. Report from the 2024 advanced prostate cancer consensus conference (APCCC)
© in press The Authors. Published by Elsevier. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1016/j.eururo.2024.09.017BACKGROUND AND OBJECTIVE: Innovations have improved outcomes in advanced prostate cancer (PC). Nonetheless, we continue to lack high-level evidence on a variety of topics that greatly impact daily practice. The 2024 Advanced Prostate Cancer Consensus Conference (APCCC) surveyed experts on key questions in clinical management in order to supplement evidence-based guidelines. Here we present voting results for questions from APCCC 2024. METHODS: Before the conference, a panel of 120 international PC experts used a modified Delphi process to develop 183 multiple-choice consensus questions on eight different topics. Before the conference, these questions were administered via a web-based survey to the voting panel members ("panellists"). KEY FINDINGS AND LIMITATIONS: Consensus was a priori defined as ≥75% agreement, with strong consensus defined as ≥90% agreement. The voting results show varying degrees of consensus, as discussed in this article and detailed in the Supplementary material. These findings do not include a formal literature review or meta-analysis. CONCLUSIONS AND CLINICAL IMPLICATIONS: The voting results can help physicians and patients navigate controversial areas of clinical management for which high-level evidence is scant or conflicting. The findings can also help funders and policymakers in prioritising areas for future research. Diagnostic and treatment decisions should always be individualised on the basis of patient and cancer characteristics, and should incorporate current and emerging clinical evidence, guidelines, and logistic and economic factors. Enrolment in clinical trials is always strongly encouraged. Importantly, APCCC 2024 once again identified important gaps (areas of nonconsensus) that merit evaluation in specifically designed trials.Published onlin