4,964 research outputs found
Infinite density matrix renormalization group for multicomponent quantum Hall systems
While the simplest quantum Hall plateaus, such as the state in
GaAs, can be conveniently analyzed by assuming only a single active Landau
level participates, for many phases the spin, valley, bilayer, subband, or
higher Landau level indices play an important role. These `multi-component'
problems are difficult to study using exact diagonalization because each
component increases the difficulty exponentially. An important example is the
plateau at , where scattering into higher Landau levels chooses
between the competing non-Abelian Pfaffian and anti-Pfaffian states. We address
the methodological issues required to apply the infinite density matrix
renormalization group to quantum Hall systems with multiple components and
long-range Coulomb interactions, greatly extending accessible system sizes. As
an initial application we study the problem of Landau level mixing in the state. Within the approach to Landau level mixing used here, we find
that at the Coulomb point the anti-Pfaffian is preferred over the Pfaffian
state over a range of Landau level mixing up to the experimentally relevant
values.Comment: 12 pages, 9 figures. v2 added more data for different amounts of
Landau level mixing at 5/2 fillin
Search for the Heliospheric Termination Shock (TS) and Heliosheath (HS)
Voyager 1 continues to measure the very distant Heliospheric Magnetic Field (HMF) beyond 95 AU at ~35 North latitude. The MAG instrument data covers more than a full 22 years solar magnetic cycle. The magnitude of the observed HMF is well described, on average, by Parker's Archimedean spiral structure if due account is made for time variations of the source field strength and solar wind velocity. The V1 magnetic field observations do not provide any evidence for a field increase associated with entry into a subsonic solar wind region, such as the heliosheath is expected to be, nor an exit from this regime. We see no evidence for crossing of the Termination Shock (TS) as has been reported at ~85 AU by the LECP instrument. Merged Interaction Regions are identified by an increased HMF and associated decreases in the flux of >70 MeV/nuc cosmic rays which are then followed by a flux recovery. This CR-B relationship has been identified in V1 data and studied since 1982 when V1 was at 11 AU. The variance of HMF, a direct measure of the energy**1/2 in the HMF fluctuations, shows no significant changes associated with the alleged TS crossings in 2002–2003. Thus, the absence of any HMF increase at the entry into the heliosheath appears not to be due to the onset of mesoscale turbulence as proposed by Fisk. The TS has yet to be directly observed in-situ by the V1 MAG experiment in data through 2003
Ascaroside Signaling Is Widely Conserved among Nematodes
Background: Nematodes are among the most successful animals on earth and include important human pathogens, yet little is known about nematode pheromone systems. A group of small molecules called ascarosides has been found to mediate mate finding, aggregation, and developmental diapause in Caenorhabditis elegans, but it is unknown whether ascaroside signaling exists outside of the genus Caenorhabditis.
Results: To determine whether ascarosides are used as signaling molecules by other nematode species, we performed a mass spectrometry-based screen for ascarosides in secretions from a variety of both free-living and parasitic (plant, insect, and animal) nematodes. We found that most of the species analyzed, including nematodes from several different clades, produce species-specific ascaroside mixtures. In some cases, ascaroside biosynthesis patterns appear to correlate with phylogeny, whereas in other cases, biosynthesis seems to correlate with lifestyle and ecological niche. We further show that ascarosides mediate distinct nematode behaviors, such as retention, avoidance, and long-range attraction, and that different nematode species respond to distinct, but overlapping, sets of ascarosides.
Conclusions: Our findings indicate that nematodes utilize a conserved family of signaling molecules despite having evolved to occupy diverse ecologies. Their structural features and level of conservation are evocative of bacterial quorum sensing, where acyl homoserine lactones (AHLs) are both produced and sensed by many species of gram-negative bacteria. The identification of species-specific ascaroside profiles may enable pheromone-based approaches to interfere with reproduction and survival of parasitic nematodes, which are responsible for significant agricultural losses and many human diseases worldwide
Seismic stratigraphy of the Ontong Java Plateau
The Ontong Java Plateau, a large, deep-water carbonate plateau in the western equatorial Pacific, is an ideal location for studying responses of carbonate sedimentation to the effects of changing paleoceanographic conditions. These carbonate responses are often reflected in the physical properties of the sediment, which in turn control the appearance of seismic reflection profiles. Seismic stratigraphy analyses, correlating eight reflector horizons to each drill site, have been conducted in an attempt to map stratigraphic data. Accurate correlation of seismic stratigraphic data to drilling results requires conversion of traveltime to depth in meters. Synthetic seismogram models, using shipboard physical properties data, have been generated in an attempt to provide this correlation. Physical properties, including laboratory-measured and well-log data, were collected from sites drilled during Deep Sea Drilling Project Legs 30 and 89, and Ocean Drilling Program Leg 130, on the top and flank of the Ontong Java Plateau. Laboratory-measured density is corrected to in-situ conditions by accounting for porosity rebound resulting from removal of the sediment from its overburden. The correction of laboratory-measured compressional velocity to in situ appears to be largely a function of increases in elastic moduli (especially shear rigidity) with depth of burial, more than a function of changes in temperature, pressure, or density (porosity rebound). Well-log velocity and density data for the ooze intervals were found to be greatly affected by drilling disturbance; hence, they were disregarded and replaced by lab data for these intervals. Velocity and density data were used to produce synthetic seismograms. Correlation of seismic reflection data with synthetic data, and hence with depth below seafloor, at each drill site shows that a single velocity-depth function exists for sediments on the top and flank of the Ontong Java Plateau. A polynomial fit of this function provides an equation for domain conversion:
Depth (mbsf) = 44.49 + 0.800(traveltime[ms]) + 3.308 Ă— 10 4 (traveltime[ms]2 )
Traveltime (ms) = -35.18 + 1.118(depth[mbsf]) - 1.969 Ă— KT* (depth[mbsf]2 )
Seismic reflection profiles down the flank of the plateau undergo three significant changes: (1) a drastic thinning of the sediment column with depth, (2) changes in the echo-character of the profile (development of seismic facies), and (3) loss of continuous, coherent reflections. Sediments on the plateau top were largely deposited by pelagic processes, with little significant postdepositional or syndepositional modification. Sediments on the flank of the plateau are also pelagic, but they have been modified by faulting, erosion, and mass movement. These processes result in disrupted and incoherent reflectors, development of seismic facies, and redistribution of sediment on the flank of the plateau. Seismic stratigraphic analyses have shown that the sediment section decreases in thickness by as much as 65% between water depths of 2000 m water depth (at the top of the plateau) and 4000 m (near the base of the plateau). Thinning is attributed to increasing carbonate dissolution with depth. If this assumption is correct, then changes in the relative thicknesses of seismostratigraphic units at each drill site are indicative of changes in the position of the lysocline and the dissolution gradient between the lysocline and the carbonate compensation depth. We think that a shallow lysocline in the early Miocene caused sediment thinning. A deepening of the lysocline in the late-early Miocene caused relative thickening at each site. Within the middle Miocene, a sharp rise in lysoclinal depth occurs, concurrent with a steepening of the dissolution gradient. These events result in sediment thinning at all four sites. The thicker sections in the late Miocene likely correspond to a deepening of the lysocline, and a subsequent rise in the lysocline again hinders accumulation of sediment in the very late Miocene and Pliocene
Panel Discussion On The Clinical Management Of Blood Dyscrasias In The Older Age Groupâ€
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111245/1/jgs00338.pd
A Method of Hospital Infection Surveillance Incorporating the Use of the Computer
The records of all patients in the hospital on a particular date were studied for hospital-acquired infections. Results were compared with a continuing surveillance based on discharge reporting. Collection of data was programmed for analysis by using the hospital computer. Thirteen per cent of the patients manifested an infection after admission, but before or on the survey day. Results elsewhere are similar. Areas of the hospital with a relatively higher incidence of infection did not have clusters of particular pathogens
Child relationships in the middle grades
Thesis (Ed.M.)--Boston Universit
Nondestructive SEM for surface and subsurface wafer imaging
The scanning electron microscope (SEM) is considered as a tool for both failure analysis as well as device characterization. A survey is made of various operational SEM modes and their applicability to image processing methods on semiconductor devices
Lidar technology measurements and technology: Report of panel
Lidar is ready to make an important contribution to tropospheric chemistry research with a variety of spaceborne measurements that complement the measurements from passive instruments. Lidar can now be considered for near-term and far-term space missions dealing with a number of scientifically important issues in tropospheric chemistry. The evolution in the lidar missions from space are addressed and details of these missions are given. The laser availability for space missions based upon the technical data is assessed
Adaptation and enslavement in endosymbiont-host associations
The evolutionary persistence of symbiotic associations is a puzzle.
Adaptation should eliminate cooperative traits if it is possible to enjoy the
advantages of cooperation without reciprocating - a facet of cooperation known
in game theory as the Prisoner's Dilemma. Despite this barrier, symbioses are
widespread, and may have been necessary for the evolution of complex life. The
discovery of strategies such as tit-for-tat has been presented as a general
solution to the problem of cooperation. However, this only holds for
within-species cooperation, where a single strategy will come to dominate the
population. In a symbiotic association each species may have a different
strategy, and the theoretical analysis of the single species problem is no
guide to the outcome. We present basic analysis of two-species cooperation and
show that a species with a fast adaptation rate is enslaved by a slowly
evolving one. Paradoxically, the rapidly evolving species becomes highly
cooperative, whereas the slowly evolving one gives little in return. This helps
understand the occurrence of endosymbioses where the host benefits, but the
symbionts appear to gain little from the association.Comment: v2: Correction made to equations 5 & 6 v3: Revised version accepted
in Phys. Rev. E; New figure adde
- …