1,502 research outputs found

    Massive Dirac fermions and the zero field quantum Hall effect

    Full text link
    Through an explicit calculation for a Lagrangian in quantum electrodynamics in (2+1)-space--time dimensions (QED3_3), making use of the relativistic Kubo formula, we demonstrate that the filling factor accompanying the quantized electrical conductivity for massive Dirac fermions of a single species in two spatial dimensions is a half (in natural units) when time reversal and parity symmetries of the Lagrangian are explicitly broken by the fermion mass term. We then discuss the most general form of the QED3_3 Lagrangian, both for irreducible and reducible representations of the Dirac matrices in the plane, with emphasis on the appearance of a Chern-Simons term. We also identify the value of the filling factor with a zero field quantum Hall effect (QHE).Comment: 15 pages. Accepted in Jour. Phys.

    Structure of the first representative of Pfam family PF04016 (DUF364) reveals enolase and Rossmann-like folds that combine to form a unique active site with a possible role in heavy-metal chelation.

    Get PDF
    The crystal structure of Dhaf4260 from Desulfitobacterium hafniense DCB-2 was determined by single-wavelength anomalous diffraction (SAD) to a resolution of 2.01 Å using the semi-automated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). This protein structure is the first representative of the PF04016 (DUF364) Pfam family and reveals a novel combination of two well known domains (an enolase N-terminal-like fold followed by a Rossmann-like domain). Structural and bioinformatic analyses reveal partial similarities to Rossmann-like methyltransferases, with residues from the enolase-like fold combining to form a unique active site that is likely to be involved in the condensation or hydrolysis of molecules implicated in the synthesis of flavins, pterins or other siderophores. The genome context of Dhaf4260 and homologs additionally supports a role in heavy-metal chelation

    The structure of BVU2987 from Bacteroides vulgatus reveals a superfamily of bacterial periplasmic proteins with possible inhibitory function.

    Get PDF
    Proteins that contain the DUF2874 domain constitute a new Pfam family PF11396. Members of this family have predominantly been identified in microbes found in the human gut and oral cavity. The crystal structure of one member of this family, BVU2987 from Bacteroides vulgatus, has been determined, revealing a β-lactamase inhibitor protein-like structure with a tandem repeat of domains. Sequence analysis and structural comparisons reveal that BVU2987 and other DUF2874 proteins are related to β-lactamase inhibitor protein, PepSY and SmpA_OmlA proteins and hence are likely to function as inhibitory proteins

    Structure of a putative NTP pyrophosphohydrolase: YP_001813558.1 from Exiguobacterium sibiricum 255-15.

    Get PDF
    The crystal structure of a putative NTPase, YP_001813558.1 from Exiguobacterium sibiricum 255-15 (PF09934, DUF2166) was determined to 1.78 Å resolution. YP_001813558.1 and its homologs (dimeric dUTPases, MazG proteins and HisE-encoded phosphoribosyl ATP pyrophosphohydrolases) form a superfamily of all-α-helical NTP pyrophosphatases. In dimeric dUTPase-like proteins, a central four-helix bundle forms the active site. However, in YP_001813558.1, an unexpected intertwined swapping of two of the helices that compose the conserved helix bundle results in a `linked dimer' that has not previously been observed for this family. Interestingly, despite this novel mode of dimerization, the metal-binding site for divalent cations, such as magnesium, that are essential for NTPase activity is still conserved. Furthermore, the active-site residues that are involved in sugar binding of the NTPs are also conserved when compared with other α-helical NTPases, but those that recognize the nucleotide bases are not conserved, suggesting a different substrate specificity

    Structure of the γ-D-glutamyl-L-diamino acid endopeptidase YkfC from Bacillus cereus in complex with L-Ala-γ-D-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases.

    Get PDF
    Dipeptidyl-peptidase VI from Bacillus sphaericus and YkfC from Bacillus subtilis have both previously been characterized as highly specific γ-D-glutamyl-L-diamino acid endopeptidases. The crystal structure of a YkfC ortholog from Bacillus cereus (BcYkfC) at 1.8 Å resolution revealed that it contains two N-terminal bacterial SH3 (SH3b) domains in addition to the C-terminal catalytic NlpC/P60 domain that is ubiquitous in the very large family of cell-wall-related cysteine peptidases. A bound reaction product (L-Ala-γ-D-Glu) enabled the identification of conserved sequence and structural signatures for recognition of L-Ala and γ-D-Glu and, therefore, provides a clear framework for understanding the substrate specificity observed in dipeptidyl-peptidase VI, YkfC and other NlpC/P60 domains in general. The first SH3b domain plays an important role in defining substrate specificity by contributing to the formation of the active site, such that only murein peptides with a free N-terminal alanine are allowed. A conserved tyrosine in the SH3b domain of the YkfC subfamily is correlated with the presence of a conserved acidic residue in the NlpC/P60 domain and both residues interact with the free amine group of the alanine. This structural feature allows the definition of a subfamily of NlpC/P60 enzymes with the same N-terminal substrate requirements, including a previously characterized cyanobacterial L-alanine-γ-D-glutamate endopeptidase that contains the two key components (an NlpC/P60 domain attached to an SH3b domain) for assembly of a YkfC-like active site

    The Morphology of Galaxies in the Baryon Oscillation Spectroscopic Survey

    Get PDF
    We study the morphology of luminous and massive galaxies at 0.3<z<0.7 targeted in the Baryon Oscillation Spectroscopic Survey (BOSS) using publicly available Hubble Space Telescope imaging from COSMOS. Our sample (240 objects) provides a unique opportunity to check the visual morphology of these galaxies which were targeted based solely on stellar population modelling. We find that the majority (74+/-6%) possess an early-type morphology (elliptical or S0), while the remainder have a late-type morphology. This is as expected from the goals of the BOSS target selection which aimed to predominantly select slowly evolving galaxies, for use as cosmological probes, while still obtaining a fair fraction of actively star forming galaxies for galaxy evolution studies. We show that a colour cut of (g-i)>2.35 selects a sub-sample of BOSS galaxies with 90% early-type morphology - more comparable to the earlier Luminous Red Galaxy (LRG) samples of SDSS-I/II. The remaining 10% of galaxies above this cut have a late-type morphology and may be analogous to the "passive spirals" found at lower redshift. We find that 23+/-4% of the early-type galaxies are unresolved multiple systems in the SDSS imaging. We estimate that at least 50% of these are real associations (not projection effects) and may represent a significant "dry merger" fraction. We study the SDSS pipeline sizes of BOSS galaxies which we find to be systematically larger (by 40%) than those measured from HST images, and provide a statistical correction for the difference. These details of the BOSS galaxies will help users of the data fine-tune their selection criteria, dependent on their science applications. For example, the main goal of BOSS is to measure the cosmic distance scale and expansion rate of the Universe to percent-level precision - a point where systematic effects due to the details of target selection may become important.Comment: 18 pages, 11 figures; v2 as accepted by MNRA

    DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice

    Get PDF
    In humans, DOCK8 immunodeficiency syndrome is characterized by severe cutaneous viral infections. Thus, CD8 T cell function may be compromised in the absence of DOCK8. In this study, by analyzing mutant mice and humans, we demonstrate a critical, intrinsic role for DOCK8 in peripheral CD8 T cell survival and function. DOCK8 mutation selectively diminished the abundance of circulating naive CD8 T cells in both species, and in DOCK8-deficient humans, most CD8 T cells displayed an exhausted CD45RA+CCR7? phenotype. Analyses in mice revealed the CD8 T cell abnormalities to be cell autonomous and primarily postthymic. DOCK8 mutant naive CD8 T cells had a shorter lifespan and, upon encounter with antigen on dendritic cells, exhibited poor LFA-1 synaptic polarization and a delay in the first cell division. Although DOCK8 mutant T cells underwent near-normal primary clonal expansion after primary infection with recombinant influenza virus in vivo, they showed greatly reduced memory cell persistence and recall. These findings highlight a key role for DOCK8 in the survival and function of human and mouse CD8 T cells

    Rab11 Is Required for Epithelial Cell Viability, Terminal Differentiation, and Suppression of Tumor-Like Growth in the Drosophila Egg Chamber

    Get PDF
    The Drosophila egg chamber provides an excellent system in which to study the specification and differentiation of epithelial cell fates because all of the steps, starting with the division of the corresponding stem cells, called follicle stem cells, have been well described and occur many times over in a single ovary.Here we investigate the role of the small Rab11 GTPase in follicle stem cells (FSCs) and in their differentiating daughters, which include main body epithelial cells, stalk cells and polar cells. We show that rab11-null FSCs maintain their ability to self renew, even though previous studies have shown that FSC self renewal is dependent on maintenance of E-cadherin-based intercellular junctions, which in many cell types, including Drosophila germline stem cells, requires Rab11. We also show that rab11-null FSCs give rise to normal numbers of cells that enter polar, stalk, and epithelial cell differentiation pathways, but that none of the cells complete their differentiation programs and that the epithelial cells undergo premature programmed cell death. Finally we show, through the induction of rab11-null clones at later points in the differentiation program, that Rab11 suppresses tumor-like growth of epithelial cells. Thus, rab11-null epithelial cells arrest differentiation early, assume an aberrant cell morphology, delaminate from the epithelium, and invade the neighboring germline cyst. These phenotypes are associated with defects in E-cadherin localization and a general loss of cell polarity.While previous studies have revealed tumor suppressor or tumor suppressor-like activity for regulators of endocytosis, our study is the first to identify such activity for regulators of endocytic recycling. Our studies also support the recently emerging view that distinct mechanisms regulate junction stability and plasticity in different tissues

    Recent Region-wide Declines in Caribbean Reef Fish Abundance

    Get PDF
    Profound ecological changes are occurring on coral reefs throughout the tropics, with marked coral cover losses and concomitant algal increases, particularly in the Caribbean region. Historical declines in the abundance of large Caribbean reef fishes likely reflect centuries of overexploitation. However, effects of drastic recent degradation of reef habitats on reef fish assemblages have yet to be established. By using meta-analysis, we analyzed time series of reef fish density obtained from 48 studies that include 318 reefs across the Caribbean and span the time period 1955–2007. Our analyses show that overall reef fish density has been declining significantly for more than a decade, at rates that are consistent across all subregions of the Caribbean basin (2.7% to 6.0% loss per year) and in three of six trophic groups. Changes in fish density over the past half-century are modest relative to concurrent changes in benthic cover on Caribbean reefs. However, the recent significant decline in overall fish abundance and its consistency across several trophic groups and among both fished and nonfished species indicate that Caribbean fishes have begun to respond negatively to habitat degradation
    corecore