13 research outputs found

    \u3ci\u3eAuricularia auricula\u3c/i\u3e polysaccharides attenuate obesity in mice through gut commensal \u3ci\u3ePapillibacter cinnamivorans\u3c/i\u3e

    Get PDF
    Introduction: Auricularia auricula is a well-known traditional edible and medical fungus with high nutritional and pharmacological values, as well as metabolic and immunoregulatory properties. Nondigestible fermentable polysaccharides are identified as primary bioactive constituents of Auricularia auricula extracts. However, the exact mechanisms underlying the effects of Auricularia auricula polysaccharides (AAP) on obesity and related metabolic endpoints, including the role of the gut microbiota, remain insufficiently understood. Methods: The effects of AAP on obesity were assessed within high-fat diet (HFD)-based mice through obesity trait analysis and metabolomic profiling. To determine the mechanistic role of the gut microbiota in observed anti-obesogenic effects AAP, faecal microbiota transplantation (FMT) and pseudo-germ-free mice model treated with antibiotics were also applied, together with 16S rRNA genomic-derived taxonomic profiling. Results:High-fat diet (HFD) murine exposure to AAP thwarted weight gains, reduced fat depositing and enhanced glucose tolerance, together with upregulating thermogenesis proteomic biomarkers within adipose tissue. Serum metabolome indicated these effects were associated with changes in fatty acid metabolism. Intestine-dwelling microbial population assessments discovered that AAP selectively enhanced Papillibacter cinnamivorans, a commensal bacterium with reduced presence in HFD mice. Notably, HFD mice treated with oral formulations of P. cinnamivorans attenuated obesity, which was linked to decreased intestinal lipid transportation and hepatic thermogenesis. Mechanistically, it was demonstrated that P. cinnamivorans regulated intestinal lipids metabolism and liver thermogenesis by reducing the proinflammatory response and gut permeability in a JAK-STAT signaling-related manner. Conclusion: Datasets from the present study show that AAP thwarted dietary-driven obesity and metabolism-based disorders by regulating intestinal lipid transportation, a mechanism that is dependent on the gut commensal P. cinnamivorans. These results indicated AAP and P. cinnamivorans as newly identified pre- and probiotics that could serve as novel therapeutics against obesity

    Resistant potato starch supplementation reduces serum histamine levels in healthy adults with links to attenuated intestinal permeability

    Get PDF
    Histamine from our diet or gut microbes can trigger gastrointestinal disturbances, and resistant potato starch (RPS) has previously been shown to alleviate these symptoms while increasing levels of health-associated bacteria such as Akkermansia through unknown mechanisms. Post hoc exploratory metabolomic analysis of serum amino acid, amine, and carnitine metabolites in participants consuming 3.5 g/day RPS or placebo (n = 48) was performed using liquid chromatography-mass spectrometry to determine whether RPS positively influences histamine metabolism and related parameters. Histamine levels were significantly reduced by RPS treatment, but histamine-degrading enzyme products were unaffected by RPS. RPS also reduced histamine-secreting Haemophilus and Lactobacillus. Further, metabolites associated with intestinal permeability, including 5-hydroxylysine, acetylspermidine, and short- and medium-chain carnitines ratios, were significantly reduced by RPS treatment, suggesting decreased serum histamine might be related to enhanced gut barrier function. These metabolomic findings expand the value of supplementing the diet with RPS

    Adaptation to tolerate high doses of arabinoxylan is associated with fecal levels of \u3ci\u3eBifidobacterium longum\u3c/i\u3e

    Get PDF
    Dietary fiber supplements are a strategy to close the ‘fiber gap’ and induce targeted modulations of the gut microbiota. However, higher doses of fiber supplements cause gastrointestinal (GI) symptoms that differ among individuals. What determines these inter-individual differences is insufficiently understood. Here we analyzed findings from a six-week randomized controlled trial that evaluated GI symptoms to corn bran arabinoxylan (AX; n = 15) relative to non-fermentable microcrystalline cellulose (MCC; n = 16) at efficacious supplement doses of 25 g/day (females) or 35 g/day (males) in adults with excess weight. Self-reported flatulence, bloating, and stomach aches were evaluated weekly. Bacterial taxa involved in AX fermentation were identified by bioorthogonal non-canonical amino acid tagging. Associations between GI symptoms, fecal microbiota features, and diet history were systematically investigated. AX supplementation increased symptoms during the first three weeks relative to MCC (p \u3c 0.05, Mann-Whitney tests), but subjects ‘adapted’ with symptoms reverting to baseline levels toward the end of treatment. Symptom adaptations were individualized and correlated with the relative abundance of Bifidobacterium longum at baseline (rs = 0.74, p = 0.002), within the bacterial community that utilized AX (rs = 0.69, p = 0.006), and AX-induced shifts in acetate (rs = 0.54, p = 0.039). Lower baseline consumption of animal-based foods and higher whole grains associated with less severity and better adaptation. These findings suggest that humans do ‘adapt’ to tolerate efficacious fiber doses, and this process is linked to their microbiome and dietary factors known to interact with gut microbes, providing a basis for the development of strategies for improved tolerance of dietary fibers

    Auricularia auricula polysaccharides attenuate obesity in mice through gut commensal Papillibacter cinnamivorans

    No full text
    Introduction: Auricularia auricula is a well-known traditional edible and medical fungus with high nutritional and pharmacological values, as well as metabolic and immunoregulatory properties. Nondigestible fermentable polysaccharides are identified as primary bioactive constituents of Auricularia auricula extracts. However, the exact mechanisms underlying the effects of Auricularia auricula polysaccharides (AAP) on obesity and related metabolic endpoints, including the role of the gut microbiota, remain insufficiently understood. Methods: The effects of AAP on obesity were assessed within high-fat diet (HFD)-based mice through obesity trait analysis and metabolomic profiling. To determine the mechanistic role of the gut microbiota in observed anti-obesogenic effects AAP, faecal microbiota transplantation (FMT) and pseudo-germ-free mice model treated with antibiotics were also applied, together with 16S rRNA genomic-derived taxonomic profiling. Results: High-fat diet (HFD) murine exposure to AAP thwarted weight gains, reduced fat depositing and enhanced glucose tolerance, together with upregulating thermogenesis proteomic biomarkers within adipose tissue. Serum metabolome indicated these effects were associated with changes in fatty acid metabolism. Intestine-dwelling microbial population assessments discovered that AAP selectively enhanced Papillibacter cinnamivorans, a commensal bacterium with reduced presence in HFD mice. Notably, HFD mice treated with oral formulations of P. cinnamivorans attenuated obesity, which was linked to decreased intestinal lipid transportation and hepatic thermogenesis. Mechanistically, it was demonstrated that P. cinnamivorans regulated intestinal lipids metabolism and liver thermogenesis by reducing the proinflammatory response and gut permeability in a JAK-STAT signaling-related manner. Conclusion: Datasets from the present study show that AAP thwarted dietary-driven obesity and metabolism-based disorders by regulating intestinal lipid transportation, a mechanism that is dependent on the gut commensal P. cinnamivorans. These results indicated AAP and P. cinnamivorans as newly identified pre- and probiotics that could serve as novel therapeutics against obesity

    Resistant potato starch supplementation reduces serum histamine levels in healthy adults with links to attenuated intestinal permeability

    No full text
    Histamine from our diet or gut microbes can trigger gastrointestinal disturbances, and resistant potato starch (RPS) has previously been shown to alleviate these symptoms while increasing levels of health-associated bacteria such as Akkermansia through unknown mechanisms. Post hoc exploratory metabolomic analysis of serum amino acid, amine, and carnitine metabolites in participants consuming 3.5 g/day RPS or placebo (n = 48) was performed using liquid chromatography-mass spectrometry to determine whether RPS positively influences histamine metabolism and related parameters. Histamine levels were significantly reduced by RPS treatment, but histamine-degrading enzyme products were unaffected by RPS. RPS also reduced histamine-secreting Haemophilus and Lactobacillus. Further, metabolites associated with intestinal permeability, including 5-hydroxylysine, acetylspermidine, and short- and medium-chain carnitines ratios, were significantly reduced by RPS treatment, suggesting decreased serum histamine might be related to enhanced gut barrier function. These metabolomic findings expand the value of supplementing the diet with RPS

    Comparison of Body Composition, Muscle Strength and Cardiometabolic Profile in Children with Prader-Willi Syndrome and Non-Alcoholic Fatty Liver Disease: A Pilot Study

    No full text
    Syndromic and non-syndromic obesity conditions in children, such as Prader-Willi syndrome (PWS) and non-alcoholic fatty liver disease (NAFLD), both lower quality of life and increase risk for chronic health complications, which further increase health service utilization and cost. In a pilot observational study, we compared body composition and muscle strength in children aged 7–18 years with either PWS (n = 9), NAFLD (n = 14), or healthy controls (n = 16). Anthropometric and body composition measures (e.g., body weight, circumferences, skinfolds, total/segmental composition, and somatotype), handgrip strength, six minute-walk-test (6MWT), physical activity, and markers of liver and cardiometabolic dysfunction (e.g., ALT, AST, blood pressure, glucose, insulin, and lipid profile) were measured using standard procedures and validated tools. Genotyping was determined for children with PWS. Children with PWS had reduced lean body mass (total/lower limb mass), lower handgrip strength, 6MWT and increased sedentary activity compared to healthy children or those with NAFLD (p p < 0.05). Reduced lean body mass and endomorphic somatotypes were associated with lower muscle strength/functionality and sedentary lifestyles, particularly in children with PWS. These findings are relevant as early detection of deficits in muscle strength and functionality can ensure effective targeted treatments that optimize physical activity and prevent complications into adulthood

    Composition and Functions of the Gut Microbiome in Pediatric Obesity: Relationships with Markers of Insulin Resistance

    No full text
    The gut microbiome is hypothesized to play a crucial role in the development of obesity and insulin resistance (IR); the pathways linking the microbiome to IR in pediatrics have yet to be precisely characterized. We aimed to determine the relationship between the gut microbiome composition and metabolic functions and IR in children with obesity. In a cross-sectional study, fecal samples from children with obesity (10–16 years old) were collected for taxonomical and functional analysis of the fecal microbiome using shotgun metagenomics. The homeostatic model assessment for insulin resistance (HOMA-IR) was determined using fasting glucose and insulin. Associations between HOMA-IR and α-diversity measures as well as metabolic pathways were evaluated using Spearman correlations; relationships between HOMA-IR and β-diversity were assessed by permutational multivariate analysis of variance. Twenty-one children (nine males; median: age = 12.0 years; BMI z-score = 2.9; HOMA-IR = 3.6) completed the study. HOMA-IR was significantly associated with measures of α-diversity but not with β-diversity. Children with higher HOMA-IR exhibited lower overall species richness, Firmicutes species richness, and overall Proteobacteria species Shannon diversity. Furthermore, HOMA-IR was inversely correlated with the abundance of pathways related to the biosynthesis of lipopolysaccharides, amino acids, and short-chain fatty acids, whereas positive correlations between HOMA-IR and the peptidoglycan biosynthesis pathways were observed. In conclusion, insulin resistance was associated with decreased microbial α-diversity measures and abundance of genes related to the metabolic pathways. Our study provides a framework for understanding the microbial alterations in pediatric obesity

    Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate.

    No full text
    BACKGROUND: Variability in the health effects of dietary fiber might arise from inter-individual differences in the gut microbiota's ability to ferment these substrates into beneficial metabolites. Our understanding of what drives this individuality is vastly incomplete and will require an ecological perspective as microbiomes function as complex inter-connected communities. Here, we performed a parallel two-arm, exploratory randomized controlled trial in 31 adults with overweight and class-I obesity to characterize the effects of long-chain, complex arabinoxylan (n = 15) at high supplementation doses (female: 25 g/day; male: 35 g/day) on gut microbiota composition and short-chain fatty acid production as compared to microcrystalline cellulose (n = 16, non-fermentable control), and integrated the findings using an ecological framework. RESULTS: Arabinoxylan resulted in a global shift in fecal bacterial community composition, reduced α-diversity, and the promotion of specific taxa, including operational taxonomic units related to Bifidobacterium longum, Blautia obeum, and Prevotella copri. Arabinoxylan further increased fecal propionate concentrations (p = 0.012, Friedman's test), an effect that showed two distinct groupings of temporal responses in participants. The two groups showed differences in compositional shifts of the microbiota (p ≤ 0.025, PERMANOVA), and multiple linear regression (MLR) analyses revealed that the propionate response was predictable through shifts and, to a lesser degree, baseline composition of the microbiota. Principal components (PCs) derived from community data were better predictors in MLR models as compared to single taxa, indicating that arabinoxylan fermentation is the result of multi-species interactions within microbiomes. CONCLUSION: This study showed that long-chain arabinoxylan modulates both microbiota composition and the output of health-relevant SCFAs, providing information for a more targeted application of this fiber. Variation in propionate production was linked to both compositional shifts and baseline composition, with PCs derived from shifts of the global microbial community showing the strongest associations. These findings constitute a proof-of-concept for the merit of an ecological framework that considers features of the wider gut microbial community for the prediction of metabolic outcomes of dietary fiber fermentation. This provides a basis to personalize the use of dietary fiber in nutritional application and to stratify human populations by relevant gut microbiota features to account for the inconsistent health effects in human intervention studies. TRIAL REGISTRATION: Clinicaltrials.gov, NCT02322112 , registered on July 3, 2015. Video Abstract
    corecore