24 research outputs found
The role of height-associated loci identified in genome wide association studies in the determination of pediatric stature
<p>Abstract</p> <p>Background</p> <p>Human height is considered highly heritable and correlated with certain disorders, such as type 2 diabetes and cancer. Despite environmental influences, genetic factors are known to play an important role in stature determination. A number of genetic determinants of adult height have already been established through genome wide association studies.</p> <p>Methods</p> <p>To examine 51 single nucleotide polymorphisms (SNPs) corresponding to the 46 previously reported genomic loci for height in 8,184 European American children with height measurements. We leveraged genotyping data from our ongoing GWA study of height variation in children in order to query the 51 SNPs in this pediatric cohort.</p> <p>Results</p> <p>Sixteen of these SNPs yielded at least nominally significant association to height, representing fifteen different loci including <it>EFEMP1-PNPT1, GPR126, C6orf173, SPAG17</it>, Histone class 1, HLA class III and <it>GDF5-UQCC</it>. Other loci revealed no evidence for association, including <it>HMGA1 and HMGA2</it>. For the 16 associated variants, the genotype score explained 1.64% of the total variation for height z-score.</p> <p>Conclusion</p> <p>Among 46 loci that have been reported to associate with adult height to date, at least 15 also contribute to the determination of height in childhood.</p
Association Analysis of the FTO Gene with Obesity in Children of Caucasian and African Ancestry Reveals a Common Tagging SNP
Recently an association was demonstrated between the single nucleotide polymorphism (SNP), rs9939609, within the FTO locus and obesity as a consequence of a genome wide association (GWA) study of type 2 diabetes in adults. We examined the effects of two perfect surrogates for this SNP plus 11 other SNPs at this locus with respect to our childhood obesity cohort, consisting of both Caucasians and African Americans (AA). Utilizing data from our ongoing GWA study in our cohort of 418 Caucasian obese children (BMI≥95th percentile), 2,270 Caucasian controls (BMI<95th percentile), 578 AA obese children and 1,424 AA controls, we investigated the association of the previously reported variation at the FTO locus with the childhood form of this disease in both ethnicities. The minor allele frequencies (MAF) of rs8050136 and rs3751812 (perfect surrogates for rs9939609 i.e. both r2 = 1) in the Caucasian cases were 0.448 and 0.443 respectively while they were 0.391 and 0.386 in Caucasian controls respectively, yielding for both an odds ratio (OR) of 1.27 (95% CI 1.08–1.47; P = 0.0022). Furthermore, the MAFs of rs8050136 and rs3751812 in the AA cases were 0.449 and 0.115 respectively while they were 0.436 and 0.090 in AA controls respectively, yielding an OR of 1.05 (95% CI 0.91–1.21; P = 0.49) and of 1.31 (95% CI 1.050–1.643; P = 0.017) respectively. Investigating all 13 SNPs present on the Illumina HumanHap550 BeadChip in this region of linkage disequilibrium, rs3751812 was the only SNP conferring significant risk in AA. We have therefore replicated and refined the association in an AA cohort and distilled a tag-SNP, rs3751812, which captures the ancestral origin of the actual mutation. As such, variants in the FTO gene confer a similar magnitude of risk of obesity to children as to their adult counterparts and appear to have a global impact
ApoE-associated modulation of neuroprotection from Aβ-mediated neurodegeneration in transgenic Caenorhabditis elegans
Allele-specific distinctions in the human apolipoprotein E (APOE) locus represent the best-characterized genetic predictor of Alzheimer's disease (AD) risk. Expression of isoform APOEε2 is associated with reduced risk, while APOEε3 is neutral and APOEε4 carriers exhibit increased susceptibility. Using Caenorhabditis elegans, we generated a novel suite of humanized transgenic nematodes to facilitate neuronal modeling of amyloid-beta peptide (Aβ) co-expression in the context of distinct human APOE alleles. We found that co-expression of human APOEε2 with Aβ attenuated Aβ-induced neurodegeneration, whereas expression of the APOEε4 allele had no effect on neurodegeneration, indicating a loss of neuroprotective capacity. Notably, the APOEε3 allele displayed an intermediate phenotype; it was not neuroprotective in young adults but attenuated neurodegeneration in older animals. There was no functional impact from the three APOE isoforms in the absence of Aβ co-expression. Pharmacological treatment that examined neuroprotective effects of APOE alleles on calcium homeostasis showed allele-specific responses to changes in ER-associated calcium dynamics in the Aβ background. Additionally, Aβ suppressed survival, an effect that was rescued by APOEε2 and APOEε3, but not APOEε4. Expression of the APOE alleles in neurons, independent of Aβ, exerted no impact on survival. Taken together, these results illustrate that C. elegans provides a powerful in vivo platform with which to explore how AD-associated neuronal pathways are modulated by distinct APOE gene products in the context of Aβ-associated neurotoxicity. The significance of both ApoE and Aβ to AD highlights the utility of this new pre-clinical model as a means to dissect their functional inter-relationship. This article has an associated First Person interview with the first author of the paper
A Genome-wide Study Reveals Copy Number Variants Exclusive to Childhood Obesity Cases
The prevalence of obesity in children and adults in the United States has increased dramatically over the past decade. Genomic copy number variations (CNVs) have been strongly implicated in subjects with extreme obesity and coexisting developmental delay. To complement these previous studies, we addressed CNVs in common childhood obesity by examining children with a BMI in the upper 5th percentile but excluding any subject greater than three standard deviations from the mean in order to reduce severe cases in the cohort. We performed a whole-genome CNV survey of our cohort of 1080 defined European American (EA) childhood obesity cases and 2500 lean controls (< 50th percentile BMI) who were genotyped with 550,000 SNP markers. Positive findings were evaluated in an independent African American (AA) cohort of 1479 childhood obesity cases and 1575 lean controls. We identified 17 CNV loci that were unique to at least three EA cases and were both previously unreported in the public domain and validated via quantitative PCR. Eight of these loci (47.1%) also replicated exclusively in AA cases (six deletions and two duplications). Replicated deletion loci consisted of EDIL3, S1PR5, FOXP2, TBCA, ABCB5, and ZPLD1, whereas replicated duplication loci consisted of KIF2B and ARL15. We also observed evidence for a deletion at the EPHA6-UNQ6114 locus when the AA cohort was investigated as a discovery set. Although these variants may be individually rare, our results indicate that CNVs contribute to the genetic susceptibility of common childhood obesity in subjects of both European and African ancestry