16 research outputs found

    Opportunities of Amlodipine as a Potential Candidate in the Evaluation of Drug Compliance during Antihypertensive Therapy

    Get PDF
    Background and Objectives: Blood pressure measurement is essential evidence to establish that the chosen medicine and dosage are appropriate, and also indirectly indicates whether the medicine is being used at all. Therefore, current research compares adherence to the target blood pressure at home and in the hospital between different age groups, using similar combinations of the drugs prescribed by the doctor within ongoing antihypertensive therapy. Moreover, it is very important to develop a method for the determination of amlodipine and its metabolite, which would suitable for clinical applications, when the result is needed as quick as possible. Materials and Methods: This prospective study included patients aged ≥18 years who were diagnosed with hypertension. Subjects were divided into two age groups according to European Society of Cardiology (ESC) hypertension guidelines; older patients (≥65 years) and adult patients (publishersversionPeer reviewe

    Fasting-Mimicking Diet Reduces Trimethylamine N-Oxide Levels and Improves Serum Biochemical Parameters in Healthy Volunteers

    Get PDF
    Funding Information: Funding: This study was performed within the Latvian Council of Science project “Trimethylamine-N-oxide as a link between unhealthy diet and cardiometabolic risks” No. Izp-2018/1-0081, supervised by M.D.; and M.V. received funding from the European Social Fund and the state budget within the project No. 8.2.2.0/20/I/004 “Support for involving doctoral students in scientific research and studies”. Publisher Copyright: © 2022 by the authors.Elevated plasma levels of trimethylamine N-oxide (TMAO) have been proposed as a diet-derived biomarker of cardiometabolic disease risk. Caloric restriction is the most common dietary intervention used to improve cardiometabolic health; however, novel trends suggest a fasting-mimicking diet (FMD) as a more feasible alternative. FMD is a variation of intermittent fasting, based on caloric restriction and limitation of protein sources of animal origin, applied in daily cycles during a 5-day period. As TMAO is intensively produced by gut microbiota after the consumption of animal-derived products, we aim to investigate whether a 5-day FMD affects plasma TMAO levels and markers of metabolic health. To investigate whether an increase in vegetable intake possesses similar effects on TMAO levels and metabolic parameters, healthy volunteers (n = 24) were subjected to a 5-day FMD and 19 volunteers served as a reference group (VEG). This group of volunteers consumed an additional four servings of vegetables per day, but otherwise stayed on their usual diet. FMD resulted in a twofold decrease in plasma TMAO levels, which was not evident in the volunteers from the VEG group. Moreover, FMD led to a weight loss of 2.8 ± 0.2 kg and a subsequent reduction in BMI compared to baseline. The FMD group exhibited a significant elevation in plasma ketone bodies (14-fold compared to baseline) and a decrease in IGF-1 levels by 37 ± 8 ng/mL. Since fasting glucose and C-peptide levels decreased, all volunteers in the FMD group showed improved insulin sensitivity and a decreased HOMA-IR index. In contrast, in the VEG group, only a slight reduction in plasma levels of fasting glucose and triglycerides was noted. In conclusion, we show that FMD is a viable strategy to reduce plasma levels of TMAO by limiting caloric intake and animal-derived protein consumption. The reduction in the level of TMAO could be an additional benefit of FMD, leading to a reduced risk of cardiometabolic diseases.publishersversionPeer reviewe

    Excretion of the Polymyxin Derivative NAB739 in Murine Urine

    Get PDF
    Extremely multiresistant strains of Enterobacteriaceae are emerging and spreading at a worrisome pace. Polymyxins are used as the last-resort therapy against such strains, in spite of their nephrotoxicity. We have previously shown that novel polymyxin derivatives NAB739 and NAB815 are less nephrotoxic in cynomolgus monkeys than polymyxin B and are therapeutic in murine Escherichia coli pyelonephritis at doses only one-tenth of that needed for polymyxin B. Here we evaluated whether the increased efficacy is due to increased excretion of NAB739 in urine. Mice were treated with NAB739 and polymyxin B four times subcutaneously at doses of 0.25, 0.5, 1, 2, and 4 mg/kg. In plasma, a clear dose-response relationship was observed. The linearity of C-max with the dose was 0.9987 for NAB739 and 0.975 for polymyxin B. After administration of NAB739 at a dose of 0.25 mg/kg, its plasma concentrations at all tested time points were above 0.5 mu g/mL while after administration at a dose of 0.5 mg/kg its plasma concentrations exceeded 1 mu g/mL. The C-max of NAB739 in plasma was up to 1.5-times higher after single (first) administration and up to two-times higher after the last administration when compared to polymyxin B. Polymyxin B was not detected in urine samples even when administered at 4 mg/kg. In contrast, the concentration of NAB739 in urine after single administration at a dose of 0.25 mg/kg was above 1 mu g/mL and after administration of 0.5 mg/kg its average urine concentration exceeded 2 mu g/mL. At the NAB739 dose of 4 mg/kg, the urinary concentrations were higher than 35 mu g/mL. These differences explain our previous finding that NAB739 is much more efficacious than polymyxin B in the therapy of murine E. coli pyelonephritis.Peer reviewe

    Data on analysis of MK-801 bioavailability in mouse plasma and brain tissue by ultra-performance liquid chromatography-tandem mass spectrometry

    Get PDF
    Funding Information: This research was supported by the European Regional Development Fund (ERDF) project No. 1.1.1.2/VIAA/1/16/244 “The role of sigma-1 receptor in sexual behavior”. Publisher Copyright: © 2019 The Author(s)MK-801, a N-methyl-D-aspartate receptor antagonist, is widely used in animal preclinical experiments to induce memory and learning impairments and schizophrenia-like behavior. In the present study, we compared the plasma and brain tissue concentrations of MK-801 after intraperitoneal (i.p.) or subcutaneous (s.c.) administration at a dose of 0.1 mg/kg in male ICR mice. Moreover, these data present the optimization of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the analysis of MK-801 in biological samples. Procedures for the preparation of brain tissue and plasma samples and instrumental analysis are described. This article is related to a research article entitled “Effects of the N-methyl-D-aspartate receptor antagonist, MK-801, on spatial memory and influence of the route of administration” [1].publishersversionPeer reviewe

    Decreased long-chain acylcarnitine content increases mitochondrial coupling efficiency and prevents ischemia-induced brain damage in rats

    Get PDF
    Publisher Copyright: © 2023 The AuthorsLong-chain acylcarnitines (LCACs) are intermediates of fatty acid oxidation and are known to exert detrimental effects on mitochondria. This study aimed to test whether lowering LCAC levels with the anti-ischemia compound 4-[ethyl(dimethyl)ammonio]butanoate (methyl-GBB) protects brain mitochondrial function and improves neurological outcomes after transient middle cerebral artery occlusion (MCAO). The effects of 14 days of pretreatment with methyl-GBB (5 mg/kg, p.o.) on brain acylcarnitine (short-, long- and medium-chain) concentrations and brain mitochondrial function were evaluated in Wistar rats. Additionally, the mitochondrial respiration and reactive oxygen species (ROS) production rates were determined using ex vivo high-resolution fluorespirometry under normal conditions, in models of ischemia-reperfusion injury (reverse electron transfer and anoxia-reoxygenation) and 24 h after MCAO. MCAO model rats underwent vibrissae-evoked forelimb-placing and limb-placing tests to assess neurological function. The infarct volume was measured on day 7 after MCAO using 2,3,5-triphenyltetrazolium chloride (TTC) staining. Treatment with methyl-GBB significantly reduced the LCAC content in brain tissue, which decreased the ROS production rate without affecting the respiration rate, indicating an increase in mitochondrial coupling. Furthermore, methyl-GBB treatment protected brain mitochondria against anoxia–reoxygenation injury. In addition, treatment with methyl-GBB significantly reduced the infarct size and improved neurological outcomes after MCAO. Increased mitochondrial coupling efficiency may be the basis for the neuroprotective effects of methyl-GBB. This study provides evidence that maintaining brain energy metabolism by lowering the levels of LCACs protects against ischemia-induced brain damage in experimental stroke models.Peer reviewe

    Inhibition of Fatty Acid Metabolism Increases EPA and DHA Levels and Protects against Myocardial Ischaemia-Reperfusion Injury in Zucker Rats

    Get PDF
    Publisher Copyright: © 2021 Janis Kuka et al.Long-chain ω-3 polyunsaturated fatty acids (PUFAs) are known to induce cardiometabolic benefits, but the metabolic pathways of their biosynthesis ensuring sufficient bioavailability require further investigation. Here, we show that a pharmacological decrease in overall fatty acid utilization promotes an increase in the levels of PUFAs and attenuates cardiometabolic disturbances in a Zucker rat metabolic syndrome model. Metabolome analysis showed that inhibition of fatty acid utilization by methyl-GBB increased the concentration of PUFAs but not the total fatty acid levels in plasma. Insulin sensitivity was improved, and the plasma insulin concentration was decreased. Overall, pharmacological modulation of fatty acid handling preserved cardiac glucose and pyruvate oxidation, protected mitochondrial functionality by decreasing long-chain acylcarnitine levels, and decreased myocardial infarct size twofold. Our work shows that partial pharmacological inhibition of fatty acid oxidation is a novel approach to selectively increase the levels of PUFAs and modulate lipid handling to prevent cardiometabolic disturbances.publishersversionPeer reviewe

    LC-MS/MS method for simultaneous quantification of the first-line anti-tuberculosis drugs and six primary metabolites in patient plasma : Implications for therapeutic drug monitoring

    Get PDF
    Funding Information: This study was funded by the Latvian Council of Science. Project No: lzp-2020/1-0050. Publisher Copyright: © 2021 The AuthorsThe pharmacokinetic profiling of drug substances and corresponding metabolites in the biological matrix is one of the most informative tools for the treatment efficacy assessment. Therefore, to satisfy the need for comprehensive monitoring of anti-tuberculosis drugs in human plasma, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous quantification of first-line anti-tuberculosis drugs (ethambutol, isoniazid, pyrazinamide, and rifampicin) along with their six primary metabolites. Simple single-step protein precipitation with methanol was chosen as the most convenient sample pre-treatment method. Chromatographic separation of the ten analyte mixture was achieved within 10 minutes on a reverse-phase C8 column using mobile phase gradient mode. The multiple reaction monitoring mode (MRM) was used for analyte detection and quantification in patient samples. The chosen quantification ranges fully covered expected plasma concentrations. The method exhibited acceptable selectivity; the within- and between-run accuracy ranged from 87.2 to 113.6%, but within- and between-run precision was between 1.6 and 14.9% (at the LLOQ level CV < 20%). Although the response of the isonicotinic acid varied depending on the matrix source (CV 21.8%), validation results proved that such inconsistency does not affect the accuracy and precision of results. If stored at room temperature plasma samples should be processed within 4 h after collection, temporary storage at −20 °C up to 24 h is acceptable due to stability issues of analytes. The developed method was applied for the patient sample analysis (n = 34) receiving anti-tuberculosis treatment with the first-line drugs.publishersversionPeer reviewe

    Acute and long-term administration of palmitoylcarnitine induces muscle-specific insulin resistance in mice

    Get PDF
    Publisher Copyright: © 2017 The Authors BioFactors published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular BiologyAcylcarnitine accumulation has been linked to perturbations in energy metabolism pathways. In this study, we demonstrate that long-chain (LC) acylcarnitines are active metabolites involved in the regulation of glucose metabolism in vivo. Single-dose administration of palmitoylcarnitine (PC) in fed mice induced marked insulin insensitivity, decreased glucose uptake in muscles, and elevated blood glucose levels. Increase in the content of LC acylcarnitine induced insulin resistance by impairing Akt phosphorylation at Ser473. The long-term administration of PC using slow-release osmotic minipumps induced marked hyperinsulinemia, insulin resistance, and glucose intolerance, suggesting that the permanent accumulation of LC acylcarnitines can accelerate the progression of insulin resistance. The decrease of acylcarnitine content significantly improved glucose tolerance in a mouse model of diet-induced glucose intolerance. In conclusion, we show that the physiological increase in content of acylcarnitines ensures the transition from a fed to fasted state in order to limit glucose metabolism in the fasted state. In the fed state, the inability of insulin to inhibit LC acylcarnitine production induces disturbances in glucose uptake and metabolism. The reduction of acylcarnitine content could be an effective strategy to improve insulin sensitivity.publishersversionPeer reviewe

    Low cardiac content of long-chain acylcarnitines in TMLHE knockout mice prevents ischaemia-reperfusion-induced mitochondrial and cardiac damage

    Get PDF
    Copyright © 2021. Published by Elsevier Inc.Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion.publishersversionPeer reviewe

    Quantitative determination of trimethyllysine in biological samples by liquid chromatography-masspectrometry

    No full text
    Darbā apkopota literatūra par trimetillizīna kvantitatīvās analīzes iespējām ar šķidrumu hromatogrāfijas metodēm. Izstrādāta un validēta jauna šķidrumu hromatogrāfijas – tandēmmasspektrometrijas metode trimetillizīna kvantitatīvai noteikšanai bioloģiskos paraugos, izmantojot derivatizāciju ar 6-aminohinolil-N-hidroksisukcīnimidilkarbamātu. Izstrādātā metode sekmīgi pielietota karnitīna biosintēzē iesaistīto savienojumu koncentrāciju mērījumiem žurku asins plazmā un audu homogenātos.The theoretical part of this thesis contains a literature review of methods for quantitative analysis of trimethyllysine by liquid chromatography. A new liquid chromatography – tandem mass spectrometry method was developed and validated for quantitative determination of trimethyllysine in biological samples by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The developed method was succesfully employed in the study of carnitine biosynthesis intermediates in rat plazma and tissue homogenates
    corecore