27 research outputs found

    Molecular Basis for Defining the Pineal Gland and Pinealocytes as Targets for Tumor Necrosis Factor

    Get PDF
    The pineal gland, the gland that translates darkness into an endocrine signal by releasing melatonin at night, is now considered a key player in the mounting of an innate immune response. Tumor necrosis factor (TNF), the first pro-inflammatory cytokine to be released by an inflammatory response, suppresses the translation of the key enzyme of melatonin synthesis (arylalkylamine-N-acetyltransferase, Aanat). Here, we show that TNF receptors of the subtype 1 (TNF-R1) are expressed by astrocytes, microglia, and pinealocytes. We also show that the TNF signaling reduces the level of inhibitory nuclear factor kappa B protein subtype A (NFKBIA), leading to the nuclear translocation of two NFKB dimers, p50/p50, and p50/RelA. The lack of a transactivating domain in the p50/p50 dimer suggests that this dimer is responsible for the repression of Aanat transcription. Meanwhile, p50/RelA promotes the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide, which inhibits adrenergically induced melatonin production. Together, these data provide a mechanistic basis for considering pinealocytes a target of TNF and reinforce the idea that the suppression of pineal melatonin is one of the mechanisms involved in mounting an innate immune response

    Glia-Pinealocyte Network: The Paracrine Modulation of Melatonin Synthesis by Tumor Necrosis Factor (TNF)

    Get PDF
    The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status

    Melatonin effect on the endothelial nitric oxide production in vitro and in vivo

    No full text
    A melatonina é produzida pela glândula pineal somente durante o escuro e atinge rapidamente a circulação, além disso, outros tecidos e células são capazes de produzir melatonina. As células endoteliais, devido a sua localização, são excelentes alvos para as ações da melatonina. O entendimento dos mecanismos de ação pelos quais a melatonina desenvolve seus efeitos sobre as células endoteliais, possibilitaria o uso desta indolamina e de seus análogos como uma importante ferramenta farmacológica. No presente trabalho, demonstramos que a melatonina em concentrações compatíveis com as encontradas na circulação durante o pico noturno de produção pela pineal, atua sobre as células endoteliais inibindo a produção de NO proveniente da enzima constitutiva (eNOS), enquanto altas concentrações de melatonina, que podem ser atingidas por exemplo pela produção por células imunocompetentes ativadas, inibem a produção induzida de NO mediada pela iNOS. A melatonina (1 nM) inibe a produção constitutiva de NO induzida por agonistas que atuam através da ativação de receptores acoplados à proteína G (histamina, carbacol e ATP/P2Y), e este efeito deve-se à inibição do aumento de [Ca2+]i por liberação de estoques intracelulares, sendo independente da ativação de receptores de melatonina. A melatonina inibe os efeitos decorrentes da produção de NO induzida por bradicinina como a produção de GMPc por células endoteliais e a vasodilatação de arteríolas \"in vivo\". A melatonina inibe a produção de NO induzida por LPS também de maneira independente da ativação de seus receptores, porém, em concentrações muito maiores (1-10 µM) do que a necessária para inibir a produção constitutiva. Estes efeitos devem-se à inibição da expressão da enzima iNOS por impedir a translocação do NF-kB ao núcleo. A vasodilatação de aortas induzida por LPS também é inibida por melatonina. Podemos concluir até o momento que as células endoteliais, devido a sua localização, são excelentes sensores para as ações da melatonina e podem auxiliar no melhor entendimento do conceito \"eixo imune-pineal\". Os estudos sobre os mecanismos pelos quais a melatonina atua em condições fisiológicas e fisiopatológicas são essenciais para se conhecer o potencial terapêutico da melatonina.Melatonin, the darkness hormone, produced at night by the pineal gland, is also synthesized in a non-rhythmic manner by other cells. Pineal and extra-pineal melatonin reaches endothelial layer, and the understanding of its mechanism of action will improve the possibilities of using this indolamine and derivates as pharmacological tools. Here we showed that melatonin, in concentrations compatible to nocturnal melatonin surge impairs the activity of eNOS, while much higher concentrations, which can be attained by activated immune competent cells, impair the induction of iNOS synthesis. As a consequence of inhibiting eNOS we showed that melatonin inhibits vasodilation of the microcirculation induced by bradykinin. The inhibitory effect of melatonin is observed only when eNOS is activated by triggering G protein-coupled receptors (bradykinin B2, muscarinic and P2Y purine receptors). Activation of eNOS by calcium-channel operated receptors (P2X) is not blocked by melatonin. Inhibition of the transcription of iNOS results in inhibition of the LPS-induced vasodilation of rat aorta. As a matter of fact, here we show that LPS effect is dependent on the endothelial layer. The mechanism of action of melatonin in inhibiting iNOS transcription is due to block of the NF-kB pathway. Our work contributed to unravel the role of endothelium cells as targets for melatonin and as a key player in the \"immune-pineal axis\". The understanding of the concentrations ranges reached by endogenous production, i.e., the discrimination between the levels achieved during physiological and physiopathological responses, are essential for using these substances as analogous therapeutical tools

    "Effects of melatonin in the production of nitric oxide in endothelial cells cultured"

    No full text
    O hormônio melatonina produzido pela glândula pineal no período de escuro, participa na regulação circadiana de processos, fisiológicos e fisiopatológicos envolvendo vasos sanguíneos. Alguns destes estudos sugerem que as células endoteliais, que revestem os vasos sanguíneos são alvo para a melatonina circulante e medeiam a regulação do tônus vascular, em condições fisiológicas, e da interação neutrófilo-endotélio, em resposta a um estímulo injuriante. O óxido nítrico produzido pelas células endoteliais é um dos responsáveis por grande parte dos eventos vasculares, e a melatonina inibe a produção de óxido nítrico em diversos modelos. O objetivo deste estudo foi verificar o efeito da melatonina na produção de óxido nítrico induzido por bradicinina em células endoteliais em cultura. Para tanto, utilizamos uma técnica de cultura primária de células endoteliais de rato e através de um marcador fluorescente de óxido nítrico intracelular, mensuramos a fluorescência em microscópio confocal. Foi verificado que a melatonina e seu precursor N-acetilserotonina inibem a produção de óxido nítrico induzido por bradicinina e este efeito não ocorre pela inibição do aumento de cálcio que induz a produção de óxido nítrico. O análogo de receptores MT2 (4P-PDOT) e MT3 (5-MCA-NAT) não provocaram qualquer alteração sobre o aumento de óxido nítrico induzido por bradicinina, e a utilização do antagonista de receptores MT1 e MT2 (luzindol) não reverteu o efeito inibitório da melatonina. Portanto, nossos dados indicam que o efeito da melatonina sobre a atividade da NOS constitutiva não é mediado por receptores de membrana. Considerando que a melatonina é capaz de ligar-se à calmodulina, inibindo desta maneira a atividade da NOS endotelial constitutiva, poderíamos sugerir que este seria o mecanismo de ação. No entanto, é preciso ressaltar que tal atividade não é comprovada para a N-acetilserotonina, assim, apesar de ser este um possível mecanismo de ação, há a necessidade de demonstrar que a N-acetilserotonina está se ligando a calmodulina extraída de células endoteliais. Em resumo, neste trabalho mostramos que a melatonina em concentrações compatíveis com o pico noturno encontrado na circulação, pode modular eventos vasculares no organismo, através da inibição da produção de óxido nítrico em células endoteliais induzida por bradicinina.Melatonin, the hormone synthesized by the pineal gland at night, signalizes darkness and modulates, in a circadian basis, blood vessels activity. Previous studies suggest that endothelial cells are the target for circulating melatonin and mediate changes in vascular tone and leukocyte-endothelial adherence properties. Melatonin effects can be mediated by several pathways, such as G protein-coupled receptors (MT1 and MT2 receptors), a putative membrane receptor, most probably an enzyme-binding site (MT3 receptor), and several intracellular mechanisms, including calmodulin binding and inhibition of constitutive and induced nitric oxide synthase. The aim of the present study was to characterize melatonin effect on the production of nitric oxide by bradykinin-stimulated endothelial cells in culture. Nitric oxide production was measured in real time at cellular level by detecting fluorescent stimulation of the probe DAF by confocal microscopy. After determining the ideal conditions for recording cumulative dose-response curves for bradykinin (1 100 nM) the effect of pre-incubated (1 min) melatonin and analogs was evaluated. Melatonin and its precursor, N-acetylserotonin, but not the selective ligands for receptors MT2 (4P-PDOT) and MT3 (5-MCA-NAT) receptors inhibited bradykinin-stimulated nitric oxide production. This effect was not blocked by the classical antagonist of MT1 and MT2 receptors, luzindol; excluding therefore the participation of membrane receptors. Taking into account that melatonin inhibits calmodulin activation of several enzymes, including constitutive nitric oxide synthase in brain and cerebellum, it could be suggested a similar mechanism for endothelial cells. However, this hypothesis is discussed taking into account that N-acetylserotonin was shown to do not bind neural cells calmodulin. In addition, here we discuss the relevance of the present finding according to physiological and physiopathological roles of endothelial nitridergic system. This analysis point melatonin modulation of constitutive nitric oxide synthase activity as a putative mechanism for explaining melatonin control of vascular tone

    Os ritmos circadianos e a reprodução em mamíferos

    No full text
    Apresenta-se uma revisão sobre o estudo da Cronobiologia com ênfase nos ritmos circadianos e a relação desses com fenômenos reprodutivos nos mamíferos

    Long-Lasting Priming of Endothelial Cells by Plasma Melatonin Levels

    Get PDF
    Background: Endothelial cells are of great interest for cell therapy and tissue engineering. Understanding the heterogeneity among cell lines originating from different sources and culture protocols may allow more standardized material to be obtained. In a recent paper, we showed that adrenalectomy interferes with the expression of membrane adhesion molecules on endothelial cells maintained in culture for 16 to 18 days. In addition, the pineal hormone, melatonin, reduces the adhesion of neutrophils to post-capillary veins in rats. Here, we evaluated whether the reactivity of cultured endothelial cells maintained for more than two weeks in culture is inversely correlated to plasma melatonin concentration. Methodology/Principal Findings: The nocturnal levels of melatonin were manipulated by treating rats with LPS. Nocturnal plasma melatonin, significantly reduced two hours after LPS treatment, returned to control levels after six hours. Endothelial cells obtained from animals that had lower nocturnal melatonin levels significantly express enhanced adhesion molecules and iNOS, and have more leukocytes adhered than cells from animals that had normal nocturnal levels of melatonin (naive or injected with vehicle). Endothelial cells from animals sacrificed two hours after a simultaneous injection of LPS and melatonin present similar phenotype and function than those obtained fromcontrol animals. Analyzing together all the data, taking into account the plasma melatonin concentration versus the expression of adhesion molecules or iNOS we detected a significant inverse correlation. Conclusions/Significance: Our data strongly suggest that the plasma melatonin level primes endothelial cells ""in vivo,"" indicating that the state of the donor animal is translated to cells in culture and therefore, should be considered for establishing cell banks in ideal conditions.FAPESP[07/07871-6]CNPq[472881/2009-4

    Melatonin inhibits LPS-induced NO production in rat endothelial cells

    No full text
    Endothelial cells produce NO by activation of constitutive nitric oxide synthase (NOS) and transcription of inducible NOS (iNOS). We have previously shown that melatonin, in the nanomolar range, inhibits activation of constitutive NOS, and in the present paper, we evaluated whether it could interfere with the expression of iNOS, which is activated by lipopolysaccharide (LPS), a major component of gram-negative bacteria cell walls. Primary cultures of rat endothelial cells were loaded with fluorescent probe for NO detection. Nuclear factor kappa B (NF-kappa B) translocation in endothelial cells elicited by LPS was measured by electromobility shift assay, and the vasodilation of aortic rings was accessed by recording isometric contraction. Melatonin in a micromolar but not in a nanomolar range inhibits the NO production induced by LPS. This effect is not dependent on the activation of G protein-coupled melatonin receptors. The nuclear NF-kappa B translocation is a process necessary for iNOS transcription, and melatonin also inhibits its translocation. LPS induced vasodilation only in endothelium-intact aortic rings, and melatonin (10 mu m) inhibits the vasodilation. Here, we show that concentrations compatible with nocturnal melatonin surge (nm) did not interfere with the activity of iNOS. Considering that micromolar melatonin concentrations could be locally achieved through production by activated immune competent cells, extra-pineal melatonin could have a protective effect against tissue injury. We propose that melatonin blocked the LPS-induced vasodilation by inhibiting the NF-kappa B pathway. Finally, we propose that the effect of melatonin on vascular reactivity is one of the mechanisms that underlies the protective effect of this indolamine against LPS.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[07/07871-6 - RPM]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Ciencia e Tecnologia (CNPq)[484206/2006-0 - RPM]Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro - FAPERJ[171.123/2006 - CLMS]Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ

    Melatonin regulates the lipopolysaccharide-induced iNOS expression in endothelial cells.

    No full text
    <p>iNOS expression in cultures obtained from naïve (black bar), vehicle injected (white bars), lipopolysaccharide injected (LPS, 0.5 mg/kg; grey bars) or LPS + melatonin injected (MEL 3.0 mg/kg; grey diagonal striped bars) animals was determined by confocal immunofluorescence. The injections were performed 2 or 6 hours before sacrifice (6 hours after lights off –24h00). Data are expressed as mean ± SEM, n = 4–8 per group; *significantly different (P<0.05) versus 2 hours vehicle group (white bars).</p

    Actions of translocator protein ligands on neutrophil adhesion and motility induced by G-protein coupled receptor signaling

    No full text
    The 18 kDa translocator protein (TSPO) also known as the peripheral benzodiazepine receptor (PBR), mediates the transportation of cholesterol and anions from the outer to the inner mitochondrial membrane in different cells types. Although recent evidences indicate a potential role for TSPO in the development of inflammatory processes, the mechanisms involved have not been elucidated. The present study investigated the ability of the specific TSPO ligands, the isoquinoline carboxamide PK11195 and benzodiazepine Ro5-4864, on neutrophil recruitment promoted by the N-formylmethionyl-leucyl-phenylalanine peptide (fMLP), an agonist of G-protein coupled receptor (GPCR). Pre-treatment with Ro5-4864 abrograted fMLP-induced leukocyte-endothelial interactions in mesenteric postcapillary venules in vivo. Moreover, in vitro Ro5-4864 treatment prevented fMLP-induced: (i) L-selectin shedding and overexpression of PECAM-1 on the neutrophil cell surface; (ii) neutrophil chemotaxis and (iii) enhancement of intracellular calcium cations (iCa(+2)). Intriguingly, the two latter effects were augmented by cell treatment with PK11195. An allosteric agonist/antagonist relation may be suggested, as the effects of Ro5-4864 on fMLP-stimulated neutrophils were reverted by simultaneous treatment with PK11195. Taken together, these data highlight TSPO as a modulator of pathways of neutrophil adhesion and locomotion induced by GPCR, connecting TSPO actions and the onset of an innate inflammatory response. (C) 2011 Elsevier Inc. All rights reserved

    Melatonin regulates the lipopolysaccharide-induced iNOS expression in endothelial cells.

    No full text
    <p>iNOS expression in cultures obtained from naïve (black bar), vehicle injected (white bars), lipopolysaccharide injected (LPS, 0.5 mg/kg; grey bars) or LPS + melatonin injected (MEL 3.0 mg/kg; grey diagonal striped bars) animals was determined by confocal immunofluorescence. The injections were performed 2 or 6 hours before sacrifice (6 hours after lights off –24h00). Data are expressed as mean ± SEM, n = 4–8 per group; *significantly different (P<0.05) versus 2 hours vehicle group (white bars).</p
    corecore