16 research outputs found

    Modeling the Local Viscoelastic Behavior of Living Cells Under Nanoindentation Tests

    No full text
    Abstract Aiming at multiscale numerical investigations of fibrous connective tissues, the present work proposes a finite strain viscoelastic model suitable to represent the local mechanical response of living cells in conjunction with finite element simulations of nanoindentation tests. The material model is formulated in a thermodynamically consistent framework based on a variational constitutive approach. As a case of study, a numerical investigation of the local compressible response of fibroblast cells is addressed. Moreover, a set of cyclic, stress relaxation and creep experiments are simulated in order to investigate the capability of the model to predict rate dependence of cells, showing sound agreement with experimental data. The proposed model may be used as a suitable tool for a better understanding of stiffness and energetic dissipation of cells

    Issues on sensitivity expressions and numerical results in topology optimization for linear elasticity problems

    No full text
    Most of the approaches found in literature dealing with topology design sequences are based on sensitivity information. In the present work, we revisit the approaches SIMP (Solid Isotropic Microstructure with Penalization), TSA (Topological Sensitivity Analysis) and ESO (Evolutionary Structural Optimization), focusing on the way these approaches dene their sensitivity expressions. In SIMP approach, a density eld (x) [0; 1] is dened as design variable and the total derivatives are calculated in a traditional fashion. The TSA calculates the sensitivity of the cost function due to the introduction of a innitesimal hole or, in other words, due to the elimination of a material point from the structure. Finally, ESO denes an approximate sensitivity based on a nite dierence of the cost function when an element is removed from the mesh. All these approaches are derived from quite dierent conceptual frameworks and provides dierent numerical procedures, fact that precludes any direct comparison among them. Despite this, when the internal strain energy is taken as the performance function, the nal sensitivity expressions of all these approaches present some similarities that are pointed out in this work. In addition, a set of numerical examples in 2D and 3D linear elasticity solved by these techniques are shown and compared at the end of this paper

    Effect of Injection Molding Melt Temperatures on PLGA Craniofacial Plate Properties during In Vitro

    No full text
    The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures

    Simulação numérica tridimensional da mecânica do joelho humano Three-dimensional numerical simulation of human knee joint mechanics

    No full text
    OBJETIVO: Por ser a articulação mecanicamente mais solicitada de nossa estrutura e pelo grande número de lesões associadas, motivaram a construção de um modelo tridimensional da articulação do joelho humano para simular a cinemática da articulação e obter as solicitações mecânicas nos principais ligamentos durante o movimento de flexão do joelho. Essas informações podem futuramente ser empregada como ferramenta de apoio à decisão médica em ortopedia, fornecendo subsídios na escolha do procedimento cirúrgico. MÉTODOS: Método dos Elementos Finitos foi utilizado para construir um modelo biomecânico, tridimensional, da articulação do joelho. Nesse modelo com seis graus de liberdade é aplicado movimento de flexão/extensão sendo os demais cinco graus de liberdade governados pelas interações entre os componentes da articulares. RESULTADOS: Foram obtidas informações dos movimentos, das rotações interna/externa e adução/abdução, das translações anterior/posterior, lateral/medial e superior/inferior e dos esforços nos quatro principais ligamentos articulares, no decorrer de um amplo movimento de flexão/extensão. Estes valores foram comparados, de forma qualitativa, com valores equivalentes obtidos na literatura. CONCLUSÃO: A análise de resultados permitiu observar que vários aspectos cinemáticos são satisfatoriamente reproduzidos. A pré-carga inicial dos ligamentos e o posicionamento das inserções ligamentares no modelo mostraram-se variáveis relevantes nos resultados.OBJECTIVE: The knee joint is the part of our structure upon which most mechanical demands are placed and a large number of lesions are associated to it. These factors motivated the construction of a three-dimensional model of the human knee joint in order to simulate joint kinematics and obtain the mechanical demands on the main ligaments during knee flexion movements. METHODS: The finite elements method was used to build a three-dimensional, biomechanical model of the knee joint. In this model with six degrees of freedom, the flexion/extension movement is applied, while the other five degrees of freedom are governed by the interactions between joint components. RESULTS: Data was collected on the movements, on the internal/external and adduction/ abduction rotations, on the anterior/posterior, lateral/medial and upper/lower translations, and on the forces acting upon the four main joint ligaments, during a wide flexion/extension movement. These values were qualitatively compared with comparable values available in the literature. CONCLUSIONS: It was observed through an analysis of the results that several kinematic aspects are satisfactorily reproduced. The initial pre-load of the ligaments and the positioning of the ligament insertions in the model were shown to be relevant variables in the results

    Influence of Processing Conditions on the Mechanical Behavior and Morphology of Injection Molded Poly(lactic-co-glycolic acid) 85:15

    No full text
    Two groups of PLGA specimens with different geometries (notched and unnotched) were injection molded under two melting temperatures and flow rates. The mechanical properties, morphology at the fracture surface, and residual stresses were evaluated for both processing conditions. The morphology of the fractured surfaces for both specimens showed brittle and smooth fracture features for the majority of the specimens. Fracture images of the notched specimens suggest that the surface failure mechanisms are different from the core failure. Polarized light techniques indicated birefringence in all specimens, especially those molded with lower temperature, which suggests residual stress due to rapid solidification. DSC analysis confirmed the existence of residual stress in all PLGA specimens. The specimens molded using the lower injection temperature and the low flow rate presented lower loss tangent values according to the DMA and higher residual stress as shown by DSC, and the photoelastic analysis showed extensive birefringence

    Biomechanical performance of Bio Cross-Pin and EndoButton for ACL reconstruction at femoral side: a porcine model

    No full text
    Abstract Introduction The method of graft fixation is critical in anterior cruciate ligament (ACL) reconstruction surgery. Success of surgery is totally dependent on the ability of the implant to secure the graft inside the bone tunnel until complete graft integration. The principle of EndoButton is based on the cortical suspension of the graft. The Cross-Pin is based on graft expansion. The aim of this study was to evaluate the biomechanical performance of EndoButton and Bio Cross-Pin to fix the hamstring graft at femoral side of porcine knee joints and evaluate whether they are able to support of loading applied on graft during immediate post-operative tasks. Methods Fourteen ACL reconstructions were carried out in porcine femurs fixing superficial flexor tendons with Titanium EndoButton (n = 7) and with 6 × 50 mm HA/PLLA Bio Cross-Pin (n = 7). A cyclic loading test was applied with 50-250 N of tensile force at 1 Hz for 1000 cycles. The displacement was measured at 20, 100, 500 and 1000 load cycles to quantify the slippage of the graft during the test. Single-cycle load-to-failure test was performed at 50 N/mm to measure fixation strength. Results The laxity during cyclic loading and the displacement to failure during single-cycle test were lower for the Bio Cross-Pin fixation (8.21 ± 1.72 mm) than the EndoButton (11.20 ± 2.00 mm). The Bio Cross-Pin (112.22 ± 21.20 N.mm–1) was significantly stiffer than the EndoButton fixation (60.50 ±10.38 N.mm–1). There was no significant difference between Bio Cross-Pin (failure loading: 758.29 ± 188.05 N; yield loading: 713.67 ± 192.56 N) and EndoButton strength (failure loading: 672.52 ± 66.56 N; yield loading: 599.91 ± 59.64 N). Both are able to support the immediate post-operative loading applied (445 N). Conclusion The results obtained in this experiment indicate that the Bio Cross-Pin technique promote stiffer fixation during cyclic loading as compared with EndoButton. Both techniques are able to support the immediate post-operative loading applied
    corecore