9 research outputs found

    The generation of biofortified and weed-resistant cereal plants through genetic engineering

    Get PDF
    El desenvolupament de cultius biofortificats amb un major contingut de minerals mitjançant l'enginyeria genètica pot resultar útil per combatre la malnutrició a curt o mitjà termini. En aquest projecte ens vam proposar desenvolupar plantes d'arròs transgèniques que acumulessin més calci (Ca) i seleni (Se) al gra. Les línies transgèniques van ser caracteritzades a nivell molecular, i es va avaluar com afectava l'expressió dels transgens a l'acumulació de minerals i al metabolisme del Ca i del Se en les plantes transgèniques. L’Striga perjudica greument la producció de cereals a l'Àfrica. L'ús de l'enginyeria genètica pot permetre el desenvolupament de noves varietats de cereals que produeixin menys quantitat d'estrigolactones, fent-les així resistents a l'Striga. En aquest estudi vam desenvolupar línies de blat de moro transgèniques que expressaven una construcció genètica de RNAi, per tal de disminuir l'expressió de dos dels gens involucrats en la biosíntesi d'estrigolactones, el Zmd27 i el Zmccd8.El desarrollo de cultivos biofortificados con un mayor contenido de minerales mediante la ingeniería genética puede resultar útil para combatir la malnutrición a corto o medio plazo. En este proyecto nos propusimos desarrollar plantas de arroz transgénicas que acumulasen más calcio (Ca) y selenio (Se) en el grano. Las líneas transgénicas resultantes fueron caracterizadas a nivel molecular, y se evaluó cómo afectaba la expressión de los transgenes en la acumulación de minerales, así como en el metabolismo del Ca y del Se en las plantas transgénicas. El género Striga perjudica gravemente la producción de cereales en África. El uso de la ingeniería genética puede permitir el desarrollo de nuevas variedades de cereales que produzcan menos cantidad de estrigolactonas, haciéndolas así resistentes a la Striga. En éste estudio desarrollamos líneas de maíz transgénicas que expresaban niveles más bajos de dos de los genes involucrados en la biosíntesis de estrigolactonas, el Zmd27 y el Zmccd8.The generation of biofortified staple crops with enhanced mineral content through genetic engineering is a promising approach to counter malnutrition in the short- and middle-term. We aimed to create a population of transgenic rice plants with increased capacity for calcium (Ca) and selenium (Se) accumulation in the grain. Transgenic rice lines were characterized at molecular level, and the impact of transgene expression on mineral accumulation and endogenous Ca and Se metabolism was preliminary evaluated. Cereal production in Africa is severely hampered by Striga infection. Genetic engineering can be used to develop Striga resistant cereal varieties through reducing strigolactone production. We generated transgenic maize plants expressing RNAi constructs targeting two genes involved in the strigolactone biosynthetic pathway, Zmd27 and Zmccd8. Expression of target genes was effectively down-regulated and distinctive phenotypes were observed in both transgenic lines. Strigolactone levels were drastically reduced in Zmccd8 line and offers great potential for Striga control

    The contribution of transgenic plants to better health through improved nutrition : opportunities and constraints

    No full text
    Malnutrition is a prevalent and entrenched global socioeconomic challenge that reflects the combined impact of poverty, poor access to food, inefficient food distribution infrastructure, and an over-reliance on subsistence mono-agriculture. The dependence on staple cereals lacking many essential nutrients means that malnutrition is endemic in developing countries. Most individuals lack diverse diets and are therefore exposed to nutrient deficiencies. Plant biotechnology could play a major role in combating malnutrition through the engineering of nutritionally enhanced crops. In this article, we discuss different approaches that can enhance the nutritional content of staple crops by genetic engineering (GE) as well as the functionality and safety assessments required before nutritionally enhanced GE crops can be deployed in the field. We also consider major constraints that hinder the adoption of GE technology at different levels and suggest policies that could be adopted to accelerate the deployment of nutritionally enhanced GE crops within a multicomponent strategy to combat malnutrition
    corecore