6 research outputs found

    Fish consumption and health in French Polynesia

    Get PDF
    French Polynesians, like other remote maritime populations are intimately connected to the ocean which nourishes their daily life and culture. Their reliance on fish raises the issue of potential exposure to harmful natural and anthropogenic contaminants as well as providing essential nutrients. The purpose of this study was to assess the risks and benefits of fish consumption in French Polynesia. This cross-sectional study included 195 adults aged 18 years old and over from the Tahiti and Moorea islands. Fatty acids, selenium (Se) and mercury (Hg) blood concentrations were measured in participants and were all very high. Blood concentrations indicate that Hg, Se and omega-3 fatty acids have a common origin, i.e. fish consumption. In comparing the Polynesian group with northern populations, we found that the Polynesian group had levels of Hg similar to those observed in Inuit populations (geometric mean (range): 90.3 (15-420) nmol/L vs. Inuit: m(r): 79.6 (4-560) nmol/L). Similar results were observed with Se blood concentrations. The fatty acid concentration was also similar to that of the Inuit population even though the specific profile of fatty acids differed. For the first time, we report very high blood concentrations of mercury, selenium and omega-3 fatty acids in a fishing population from the South Pacific, comparable to those reported among fishing populations from the Northern hemisphere. Further work is ongoing to better substantiate public health nutritional policies. Key Words: Seafood, mercury, selenium, omega-3 fatty acids, Polynesia INTRODUCTION Polynesians are intimately connected to the oceanic environment which nourishes their daily life and culture. They still rely on it, as an important part of their daily diet is sea food and are among the highest fish consuming nations in the world. Among the small developing island states in the Pacific and Indian oceans, as well as in the Caribbean, several countries have a per capita fish consumption of over 50 kg a year, compared to 16 kg a year for the world average. Indeed with 54 kg/year, French Polynesia is listed among the 23 countries where people consume more than 50 kg of fish per annum. 1 The consumption of high amounts of fish raises the issue of potential exposure to harmful natural and anthropogenic contaminants while providing important nutrients essential to health. 2 Balancing the risks and benefits from seafood is a burning debate not only for urban individuals, but certainly and even more so for communities who rely on this diet for their subsistence. Populations from the circumpolar region have had to face such a dilemma over the last decade

    Influence of mercury exposure on blood pressure, resting heart rate and heart rate variability in French Polynesians: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Populations which diet is rich in seafood are highly exposed to contaminants such as mercury, which could affect cardiovascular risk factors</p> <p>Objective</p> <p>To assess the associations between mercury and blood pressure (BP), resting heart rate (HR) and HR variability (HRV) among French Polynesians</p> <p>Methods</p> <p>Data were collected among 180 adults (≄ 18 years) and 101 teenagers (12-17 years). HRV was measured using a two-hour ambulatory electrocardiogram (Holter) and BP was measured using a standardized protocol. The association between mercury and HRV and BP parameters was studied using analysis of variance (ANOVA) and analysis of covariance (ANCOVA)</p> <p>Results</p> <p>Among teenagers, the high frequency (HF) decreased between the 2<sup>nd </sup>and 3<sup>rd </sup>tertile (380 vs. 204 ms<sup>2</sup>, p = 0.03) and a similar pattern was observed for the square root of the mean squared differences of successive R-R intervals (rMSSD) (43 vs. 30 ms, p = 0.005) after adjusting for confounders. In addition, the ratio low/high frequency (LF/HF) increased between the 2<sup>nd </sup>and 3<sup>rd </sup>tertile (2.3 vs. 3.0, p = 0.04). Among adults, the standard deviation of R-R intervals (SDNN) tended to decrease between the 1<sup>st </sup>and 2<sup>nd </sup>tertile (84 vs. 75 ms, p = 0.069) after adjusting for confounders. Furthermore, diastolic BP tended to increase between the 2<sup>nd </sup>and 3<sup>rd </sup>tertile (86 vs. 91 mm Hg, p = 0.09). No significant difference was observed in resting HR or pulse pressure (PP)</p> <p>Conclusions</p> <p>Mercury was associated with decreased HRV among French Polynesian teenagers while no significant association was observed with resting HR, BP, or PP among teenagers or adults</p

    Branched-Chain and Aromatic Amino Acids in Relation to Fat Mass and Fat-Free Mass Changes among Adolescents: A School-Based Intervention

    No full text
    Plasma levels of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) are considered early metabolic markers of obesity and insulin resistance (IR). This study aimed to assess changes in plasma concentrations of BCAA/AAA and HOMA-IR2 (homeostasis model assessment of IR) after intervention-induced modifications in fat mass (FM) and fat-free mass (FFM) among French Polynesian adolescents. FM, FFM, plasma levels of BCAA and AAA, HOMA-IR2 were recorded at baseline and post intervention among 226 adolescents during a 5-month school-based intervention on diet and physical activity. Participants were divided into two subgroups according to their college attendance status which determined their intervention adherence: externs/half-residents (n = 157) and residents (n = 69). Four ordinal categories of body composition changes post-intervention were created for the analysis (FMgain/FFMlost < FMgain/FFMgain < FMlost/FFMlost < FMlost/FFMgain). After 5 months, changes in BCAA (p−trend < 0.001) and AAA (p−trend = 0.007) concentrations were positively associated with ordinal categories of body composition. HOMA-IR2 significantly decreased with FMlost (−0.40; 95% CI, −0.60 to −0.20) and increased with FMgain (0.23; 95% CI, 0.11 to 0.36). Our results suggest that FM loss is associated with a decrease in concentrations of obesity and IR metabolic markers which is more substantial when FM loss is accompanied with FFM gain

    Unravelling the determinants of human health in French Polynesia: the MATAEA project

    No full text
    BackgroundFrench Polynesia is a French overseas collectivity in the Southeast Pacific, comprising 75 inhabited islands across five archipelagoes. The human settlement of the region corresponds to the last massive migration of humans to empty territories, but its timeline is still debated. Despite their recent population history and geographical isolation, inhabitants of French Polynesia experience health issues similar to those of continental countries. Modern lifestyles and increased longevity have led to a rise in non-communicable diseases (NCDs) such as obesity, diabetes, hypertension, and cardiovascular diseases. Likewise, international trade and people mobility have caused the emergence of communicable diseases (CDs) including mosquito-borne and respiratory diseases. Additionally, chronic pathologies including acute rheumatic fever, liver diseases, and ciguatera, are highly prevalent in French Polynesia. However, data on such diseases are scarce and not representative of the geographic fragmentation of the population. ObjectivesThe MATAEA project aims to estimate the prevalence of several NCDs and CDs in the population of the five archipelagoes, and identify associated risk factors. Moreover, genetic analyses will contribute to determinate the sequence and timings of the peopling history of French Polynesia, and identify causal links between past genetic adaptation to island environments, and present-day susceptibility to certain diseases. MethodsThis cross-sectional survey is based on the random selection of 2,100 adults aged 18-69 years and residing on 18 islands from the five archipelagoes. Each participant answered a questionnaire on a wide range of topics (including demographic characteristics, lifestyle habits and medical history), underwent physical measurements (height, weight, waist circumference, arterial pressure, and skin pigmentation), and provided biological samples (blood, saliva, and stool) for biological, genetic and microbiological analyses. ConclusionFor the first time in French Polynesia, the MATAEA project allows to collect a wide range of data to explore the existence of indicators and/or risk factors for multiple pathologies of public health concern. The results will help health authorities to adapt actions and preventive measures aimed at reducing the incidence of NCDs and CDs. Moreover, the new genomic data generated in this study, combined with anthropological data, will increase our understanding of the peopling history of French Polynesia

    Table1_Unravelling the determinants of human health in French Polynesia: the MATAEA project.docx

    No full text
    BackgroundFrench Polynesia is a French overseas collectivity in the Southeast Pacific, comprising 75 inhabited islands across five archipelagoes. The human settlement of the region corresponds to the last massive migration of humans to empty territories, but its timeline is still debated. Despite their recent population history and geographical isolation, inhabitants of French Polynesia experience health issues similar to those of continental countries. Modern lifestyles and increased longevity have led to a rise in non-communicable diseases (NCDs) such as obesity, diabetes, hypertension, and cardiovascular diseases. Likewise, international trade and people mobility have caused the emergence of communicable diseases (CDs) including mosquito-borne and respiratory diseases. Additionally, chronic pathologies including acute rheumatic fever, liver diseases, and ciguatera, are highly prevalent in French Polynesia. However, data on such diseases are scarce and not representative of the geographic fragmentation of the population.ObjectivesThe present project aims to estimate the prevalence of several NCDs and CDs in the population of the five archipelagoes, and identify associated risk factors. Moreover, genetic analyses will contribute to determine the sequence and timings of the peopling history of French Polynesia, and identify causal links between past genetic adaptation to island environments, and present-day susceptibility to certain diseases.MethodsThis cross-sectional survey is based on the random selection of 2,100 adults aged 18–69 years and residing on 18 islands from the five archipelagoes. Each participant answered a questionnaire on a wide range of topics (including demographic characteristics, lifestyle habits and medical history), underwent physical measurements (height, weight, waist circumference, arterial pressure, and skin pigmentation), and provided biological samples (blood, saliva, and stool) for biological, genetic and microbiological analyses.ConclusionFor the first time in French Polynesia, the present project allows to collect a wide range of data to explore the existence of indicators and/or risk factors for multiple pathologies of public health concern. The results will help health authorities to adapt actions and preventive measures aimed at reducing the incidence of NCDs and CDs. Moreover, the new genomic data generated in this study, combined with anthropological data, will increase our understanding of the peopling history of French Polynesia.Clinical trial registrationhttps://clinicaltrials.gov/, identifier: NCT06133400.</p
    corecore