2,886 research outputs found

    The SCUBA Local Universe Galaxy Survey I: First Measurements of the Submillimetre Luminosity and Dust Mass Functions

    Full text link
    We have used SCUBA to observe a complete sample of 104 galaxies selected at 60 microns from the IRAS BGS and we present here the 850 micron measurements. Fitting the 60,100 and 850 micron fluxes with a single temperature dust model gives the sample mean temperature T=36 K and beta = 1.3. We do not rule out the possibility of dust which is colder than this, if a 20 K component was present then our dust masses would increase by factor 1.5-3. We present the first measurements of the luminosity and dust mass functions, which were well fitted by Schechter functions (unlike those 60 microns). We have correlated many global galaxy properties with the submillimetre and find that there is a tendancy for less optically luminous galaxies to contain warmer dust and have greater star formation efficiencies (cf. Young 1999). The average gas-to-dust ratio for the sample is 581 +/- 43 (using both atomic and molecular hydrogen), significantly higher than the Galactic value of 160. We believe this discrepancy is due to a cold dust component at T < 20 K. There is a suprisingly tight correlation between dust mass and the mass of molecular hydrogen as estimated from CO measurements, with an intrinsic scatter of ~50%.Comment: 24 pages, 15 figures, 8 tables, accepted for publication in MNRA

    Modeling the radial abundance distribution of the transition galaxy ngc 1313

    Get PDF
    NGC 1313 is the most massive disk galaxy showing a flat radial abundance distribution in its interstellar gas, a behavior generally observed in magellanic and irregular galaxies. We have attempted to reproduce this flat abundance distribution using a multiphase chemical evolution model, which has been previously used sucessfully to depict other spiral galaxies along the Hubble morphological sequence. We found that it is not possible to reproduce the flat radial abundance distribution in NGC 1313, and at the same time, be consistent with observed radial distributions of other key parameters such the surface gas density and star formation profiles. We conclude that a more complicated galactic evolution model including radial flows, and possibly mass loss due to supernova explosions and winds, is necessary to explain the apparent chemical uniformity of the disk of NGC 1313Comment: 14 paginas, 4 figures, to be published in ApJ, apri

    Dust-to-Gas Ratio and Metallicity in Dwarf Galaxies

    Full text link
    We examine the dust-to-gas ratio as a function of metallicity for dwarf galaxies [dwarf irregular galaxies (dIrrs) and blue compact dwarf galaxies (BCDGs)]. Using a one-zone model and adopting the instantaneous recycling approximation, we prepare a set of basic equations which describes processes of dust formation and destruction in a galaxy. Four terms are included for the processes: dust formation from heavy elements ejected by stellar mass loss, dust destruction in supernova remnants, dust destruction in star-forming regions, and accretion of heavy elements onto preexisting dust grains. Solving the equations, we compare the result with observational data of nearby dIrrs and BCDGs. The solution is consistent with the data within the reasonable ranges of model parameters constrained by the previous examinations. This means that the model is successful in understanding the dust amount of nearby galaxies. We also show that the accretion rate of heavy element onto preexisting dust grains is less effective than the condensation of heavy elements in dwarf galaxies.Comment: 14 pages LaTeX, 4 figures, to appear in Ap

    A New Probe of the Molecular Gas in Galaxies: Application to M101

    Get PDF
    Recent studies of nearby spiral galaxies suggest that photodissociation regions (PDRs) are capable of producing much of the observed HI in galaxy disks. In that case, measurements of the HI column density and the far-ultraviolet (FUV) photon flux provide a new probe of the volume density of the local underlying H_2. We develop the method and apply it to the giant Scd spiral M101 (NGC 5457). We find that, after correction for the best-estimate gradient of metallicity in the ISM of M101 and for the extinction of the ultraviolet emission, molecular gas with a narrow range of density from 30-1000 cm^-3 is found near star- forming regions at all radii in the disk of M101 out to a distance of 12' (approximately 26 kpc), close to the photometric limit of R_25 = 13.5'. In this picture, the ISM is virtually all molecular in the inner parts of M101. The strong decrease of the HI column density in the inner disk of the galaxy at R_G < 10 kpc is a consequence of a strong increase in the dust-to-gas ratio there, resulting in an increase of the H_2 formation rate on grains and a corresponding disappearance of hydrogen in its atomic form.Comment: accepted for publication in The Astrophysical Journal (1 August 2000); 29 pages including 20 figures (7 gif); AAS LaTex; contact authors for full resolution versions of gif figure

    Resonantly inverted microwave transmissivity threshold of metal grids

    Get PDF
    Open Access journal© Crown copyright 2009. This work is part funded by the Ministry of Defence and is published with the permission of the Defence Science and Technology Laboratory on behalf of the Controller of HMSO.The microwave transmission of arrays of square patches, each rotated by 45 from the axes of the square lattice on which they are positioned, has been experimentally studied as a function of metal occupancy. At low frequencies, the microwave transmissivity drops on passing through the connectivity threshold (50 per cent occupancy), as one would expect. However, quite counter-intuitively, near the onset of diffraction, resonant phenomena induce a complete reversal in the sense of this transmissivity switch, i.e. the transmission is seen to increase as the metal occupancy is increased.DstlEngineering and Physical Sciences Research Council (EPSRC

    Metallicities of 0.3<z<1.0 Galaxies in the GOODS-North Field

    Full text link
    We measure nebular oxygen abundances for 204 emission-line galaxies with redshifts 0.3<z<1.0 in the Great Observatories Origins Deep Survey North (GOODS-N) field using spectra from the Team Keck Redshift Survey (TKRS). We also provide an updated analytic prescription for estimating oxygen abundances using the traditional strong emission line ratio, R_{23}, based on the photoionization models of Kewley & Dopita (2003). We include an analytic formula for very crude metallicity estimates using the [NII]6584/Halpha ratio. Oxygen abundances for GOODS-N galaxies range from 8.2< 12+log(O/H)< 9.1 corresponding to metallicities between 0.3 and 2.5 times the solar value. This sample of galaxies exhibits a correlation between rest-frame blue luminosity and gas-phase metallicity (i.e., an L-Z relation), consistent with L-Z correlations of previously-studied intermediate-redshift samples. The zero point of the L-Z relation evolves with redshift in the sense that galaxies of a given luminosity become more metal poor at higher redshift. Galaxies in luminosity bins -18.5<M_B<-21.5 exhibit a decrease in average oxygen abundance by 0.14\pm0.05 dex from z=0 to z=1. This rate of metal enrichment means that 28\pm0.07% of metals in local galaxies have been synthesized since z=1, in reasonable agreement with the predictions based on published star formation rate densities which show that ~38% of stars in the universe have formed during the same interval. (Abridged)Comment: AASTeX, 49 pages, 16 figures, accepted for publication in The Astrophysical Journa

    An Old Cluster in NGC 6822

    Get PDF
    We present spectroscopy of two clusters in the dwarf irregular galaxy NGC 6822. From these we deduce an age for Cluster VII of 11 Gyr and [Fe/H] = -1.95 +/- 0.15 dex. Cluster VII appears to be an analog of the metal-poor galactic globular clusters. Cluster VI is found to be much younger and more metal rich, with an age of approximately 2 Gyr. Its derived metallicity, [Fe/H], of approximately -1.0 dex is comparable to that of the gas seen today in NGC 6822. The existence of a metal-poor old cluster in NGC 6822 rules out models for the chemical evolution of this galaxy with significant prompt initial enhancement. We find that a star formation rate which is constant with time and is within a factor of two of the present star formation rate can reproduce the two points on the age-metallicity relationship for NGC 6822 over the past 10 Gyr defined by these two clusters.Comment: 8 pages; accepted for publication in A

    Pseudospectra in non-Hermitian quantum mechanics

    Get PDF
    We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT-symmetric quantum mechanics.Comment: version accepted for publication in J. Math. Phys.: criterion excluding basis property (Proposition 6) added, unbounded time-evolution discussed, new reference

    Resonantly overcoming metal opacity

    Get PDF
    Copyright © 2013 American Institute of PhysicsThe near-perfect response of electrons in metals to low-frequency electromagnetic fields makes even a sub-skin-depth film almost completely opaque to microwave radiation. Here, it is experimentally demonstrated that by surrounding a ∌60 nm aluminium film with an array of thin resonant cavities, over 35% of the microwave radiation incident can be transmitted over a discrete set of narrow bands. This represents an enhancement of ∌1000 times over an isolated film and allows for a frequency selective screen with a thickness less than 1/70th of the operating wavelength that may be tuned through choice of resonant geometr
    • 

    corecore