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The near-perfect response of electrons in metals to low-frequency electromagnetic fields makes even

a sub-skin-depth film almost completely opaque to microwave radiation. Here, it is experimentally

demonstrated that by surrounding a �60 nm aluminium film with an array of thin resonant cavities,

over 35% of the microwave radiation incident can be transmitted over a discrete set of narrow

bands. This represents an enhancement of �1000 times over an isolated film and allows for a

frequency selective screen with a thickness less than 1/70th of the operating wavelength that may be

tuned through choice of resonant geometry. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4773477]

Since Ebbesen et al.1 provided the evidence for resonantly

enhanced transmission through arrays of subwavelength-size

apertures in metals in 1998, there has been a great resurgence

of interest in the electromagnetic properties of textured metal-

lic films. At millimetre wavelengths, arrays of subwavelength

holes in metallic substrates2 or single holes with surface topog-

raphy3 allow for strong transmission enhancement over a

narrow frequency band, with the enhancement mechanism pre-

dominantly attributed to diffraction enhancing the evanescent

fields within the hole. Untextured metallic films have also

attracted some interest, including a relatively recent study in

the visible domain that utilised quarter–wavelength thick im-

pedance matching layers to achieve enhanced transmission4

through an otherwise opaque metal layer. Taking these ideas to

the microwave regime would clearly result in �centimetre-

thick and relatively cumbersome structures. Indeed, a similar

concept has been known for many years, which employs three-

dimensional wavelength-sized resonant cavities, and has been

used in the design of microwave transmission spectrometers.5

However, in the present study, we utilise an extension of the

idea developed by some of the current authors6 to greatly

reduce the sample thickness of microwave absorbers. The

essence of the idea is to use an array of parallel closely spaced

metallic strips that support a series of standing wave resonan-

ces in the plane of the structure, rather than perpendicular to it.

The placement of a metallic layer at the centre of the thin cav-

ities formed between the strips, in the plane of the structure,

may be considered analogous to the inclusion of a tunnel bar-

rier in a quantum mechanical system.4 Using diffraction to effi-

ciently couple radiation into a waveguide mode is certainly not

new. Tien published on this subject in 1977,7 and more

recently, such an approach has been extensively studied for

the improvement of solar cell efficiency8–10 (and references
therein). But here, the resonance of the cavity provides a

method to match impedance and hence provide enhanced trans-

mission across the thin film, three orders of magnitude stronger

than that obtained through the thin metal layer in isolation.

The experimental sample is comprised of two polyester

film (Mylar
VR

) sheets (dt¼ 75 lm thickness), one of which is

coated with mt¼ 60 nm of aluminium, arranged to give a

polyester-aluminium-polyester tri-layer. The continuity of the

aluminium layer and its thickness were checked and meas-

ured using a scanning electron microscope. This region is

surrounded by two periodic structures (gratings above and

below) comprised of strips of copper w¼ 3.68 mm wide and

ct¼ 17 lm thick, arranged with a periodicity kg¼ 3.80 mm.

The gratings were fabricated by standard printed-circuit-

board etching of copper coated (single sided), 0.80 mm-thick,

FR4 laminates. The etched printed circuit board (PCBs) were

arranged such that the FR4 was the outermost layer, hence

there was only a 75 lm dielectric layer between each grating

and thin metal film. (In principle, an overall sample thickness

could be below 200lm, as shown by Figure. 1).

The sample, of surface area 165 mm� 255 mm, was

sandwiched between two sheets of 7.44 mm thick acrylic

plastic and fastened around the edges with nylon screws.

This was required to ensure that the sample as a whole was

flat and air pockets at the centre of the structure were

reduced to a minimum. The experimental transmission spec-

tra of microwave radiation, with its electric field perpendicu-

lar to the slits, incident normally (h¼ 0) upon the sample,

are shown in Figure 2.

Transmission of �35%, normalised to the intensity

recorded without a sample, is achieved at resonance. This equa-

tes to an enhancement of some 1000 times, compared with that

FIG. 1. Schematic cross-section through the sample, illustrating the plane of

incidence, coordinate system, polar angle h, pitch, kg, and the thickness of

the layers. The patterned copper layer is etched from a single sided FR4

PCB laminate. These PCBs form the outermost layers of the sample, with

the patterned copper layer facing inwards. For clarity, the 0.8 mm thick FR4

substrate is not shown.
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expected for transmission through the isolated metal film

(calculated using a Fourier modal method model,11 with

eAl ¼ �104 þ 107i).
Material parameters for the various dielectrics in the

system were determined by undertaking independent charac-

terisation measurements, the results of which were fitted to

the predictions of a finite element method (FEM) numerical

model.12 The Fabry-Perot like transmission resonances in

the transmission spectra of one of the acrylic plastic layers

were utilised to determine its permittivity, (e ¼ 2:6þ 0:15i),
while the real part of the polyester permittivity was charac-

terised by filling the gap between two metallic plates with

the polyester, following a similar method to Ref. 13

(e ¼ 2:6). The loss in the polyester was negligible. The FR4

parameters (e ¼ 4:1þ 0:082i) were determined by pressing

one of the patterned PCBs onto a flat metal plate, and record-

ing the resonances in reflectivity spectra and numerically fit-

ting this data, as described in Ref. 6. These parameters,

together with the Drude value of the permittivity of bulk alu-

minium (e ¼ �104 þ 107i), and the geometric parameters

described above were used in the FEM numerical model to

predict the transmission through the aluminium film and sur-

rounding structure. The model also incorporates a small

(10 lm-thick) air gap between the aluminized polyester and

the bare polyester layers, due to imperfections in sample

design and assembly. Without the inclusion of this extra

layer in the model, the resonance is near-identical in shape

and height compared to that shown in Figure 2, but shifted

somewhat to lower frequencies by �1.0 GHz. Notice also

that the transmission maximum is slightly asymmetric with

the high frequency side of the resonance transmitting less

than the low frequency side; this is due to the resonant

response being superimposed on the capacitive low-pass fre-

quency selective behaviour of the arrays of disconnected

metal elements, see, e.g., Ref. 14.

Numerical FEM modelling of the electromagnetic fields

shows the peak in transmission to occur at the resonance of

the fundamental mode supported in between the copper

strips. This mode, excited by the evanescent diffracted fields

at the surface of the patterned copper layer, corresponds to a

half wavelength quantisation associated with the copper strip

width, w. The electric and magnetic fields are separated both

spatially and temporally within the polyester region, with the

electric fields strongly enhanced at the edges of the strip

(Figure 3), and thus regions of very high magnetic field are

localised at the centre of the slit cavities. Power transferred

into the metal is proportional to the square of the magnitude

of the magnetic field. The magnetic field penetrates across

the metal film layer, since its thickness is much smaller than

the skin depth, thereby exciting the resonance on the trans-

mission (lower) side of the aluminium film. The two resona-

tors are strongly coupled together, oscillate in phase, and

reradiate in to free space, via diffraction at the copper slits.

Note however, that the E field magnitude has reduced in the

lower half of the split cavity.

It is important to re-emphasise here that the isolated alu-

minium film is opaque to radiation due to a large impedance

mismatch between the film and free space (not due to a skin

depth effect). Therefore, since the resonance essentially pro-

vides an impedance matching mechanism, one may naively

argue that 100% transmission should be expected on this

condition. However, the large imaginary component of the

aluminium’s dielectric constant (107i) results in rapid

absorption of the penetrating energy and places a limit on

the transmission. Figure 4 illustrates the dependence of the

modelled peak transmission of the fundamental mode on the

thickness of the thin metal film, using the aforementioned

Drude parameters for aluminium. These predictions were

obtained using a Fourier modal method.15 The transmission

intensity falls rapidly as the film thickness is increased, being

less than 1% for thicknesses of 1000 nm or greater. The

Drude parameters for the aluminium’s permittivity give a

good agreement between modelling and our experimental

results for 60 nm films (�35%), but these parameters may

not be applicable for much thinner films. For very thin films,

the classical resistivity size effect will become significant,

while grain boundary scattering may contribute substantially

to the resistivity, and the film may even become discontinu-

ous. It is clear however that decreasing the film thickness

will result in an increase of the peak transmission.

Optimisation of the resonantly transmitting system using

the FEM model is shown by Figure 4 inset. Here, the FR4

core is given a loss tangent identical to the commercially

available Neltec NY9208 PCB medium ((ei / er¼ 0.0006)

FIG. 2. Normal incidence (h¼ 0), microwave electric field perpendicular to

the slits, transmission data compared with FEM model predictions for the

fundamental mode. The modelled data use the sample dimensions discussed

previously and incorporates a small (10 lm-thick) air gap at the metal layer

due to imperfections in sample design and limitations in assembly.

FIG. 3. Predictions of the time-averaged electric (E) field on resonance (col-

our gradient) together with a schematic representation of the electric vector

orientation at a phase corresponding to maximum field enhancement. Red

regions correspond to field enhancements in excess of 10 times the incident

field.
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dashed line). The reduction of this loss channel results in a

12% increase in transmission on resonance. Reducing the

film thickness from 60 nm to 20 nm (solid line) further

increases the transmission efficiency, with 71% of the inci-

dent radiation being transmitted on resonance through the

otherwise opaque metal film.

Figure 5 shows the experimentally measured p-polarised

(transverse magnetic, B field parallel to the slits) transmission

results for incidence angles up to 15� from normal. The fre-

quency, position, and width of the mode remain fairly con-

stant across this angle range. The mode rises in frequency

slightly at higher angles due mainly to the small phase differ-

ence being imparted across the slit openings, which will be

reduced by a reduction in the slit width. In addition to the fun-

damental mode, the system also supports higher frequency

modes associated with the multiples of half-wavelength quan-

tisation in strip width, w. These higher order modes are less

strongly coupled however. Further, due to symmetry argu-

ments, only odd order modes will be coupled to at normal

incidence since even number modes would require a phase

variance in the incident wave across w. Initial modelling (not

presented) also shows that a two dimensional array of square

or circular patches will provide a polarisation and largely azi-

muth angle invariant response.

In conclusion, �35% resonant transmission of micro-

waves through a thin (1/70th of the operating wavelength) res-

onant structure containing an otherwise opaque continuous

metal film has been experimentally recorded and results found

to be in good agreement with modelling. This transmission is

some 1000-times that expected through the stand-alone thin

film, occurring over a discrete narrow band of frequencies that

may be tuned through variation of the cavity geometry. Opti-

misation of the system using the finite element method model

shows resonant transmission of 71% to be achievable using

low loss dielectrics and a 20 nm thick aluminium film. The

standing wave resonances within the resonant cavities on the

illuminated side of the thin metal layer couple through the

layer exciting an equivalent resonance in cavities on the other

side of the film, which then subsequently reradiates into the

transmission space. It is also suggested that an incident angle

and polarisation invariant response is readily obtainable.
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FIG. 5. Experimental transmission measurements for p-polarised (TM) radi-

ation in the region of the fundamental mode for �15�< h< 15�.
FIG. 4. Predictions of the dependence of the peak transmission intensity of

the fundamental mode on the aluminium film thickness, modelled using the

Fourier modal method.14 The complex permittivity of the aluminium has

been set as e ¼ �104 þ 107i. Inset: Optimisation of the resonantly transmit-

ting system using the FEM model. Replacing the FR4 core with a low loss

dielectric (dashed line) and then reducing the film thickness to 20 nm (solid

line results in a transmission efficiency of 71%).
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