66 research outputs found

    Reciprocal natural selection on hostā€parasite phenotypes

    Full text link
    Coevolution is evolution in one species in response to selection imposed by a second species, followed by evolution in the second species in response to reciprocal selection imposed by the first species. Although reciprocal selection is a prerequisite of coevolution, it has seldom been documented in natural populations. We examined the feasibility of reciprocal selection in a simple hostā€parasite system consisting of feral pigeons (Columba livia) and their Ischnoceran feather lice (Phthiraptera: Insecta). We tested for a selective effect of parasites on hosts with experimentally altered defenses and for a selective effect of host defense on a component of parasite escape. Previous work indicates that pigeons control lice through efficient preening, while lice escape from preening using complex avoidance behavior. Our results show that feral pigeons with impaired preening, owing to slight bill deformities, have higher louse loads than pigeons with normal bills. We use a controlled experiment to show that high louse loads reduce the survival of pigeons, suggesting that lice select for efficient preening and against bill deformities. In a reciprocal experiment, we demonstrate that preening with a normal bill selects for small body size in lice, which may facilitate their escape from preening. The results of this study verify a crucial element of coevolutionary theory by identifying likely targets of reciprocal phenotypic selection between host and parasite

    Adaptive radiation along a deeply conserved genetic line of least resistance in \u3cem\u3eAnolis\u3c/em\u3e lizards

    Get PDF
    On microevolutionary timescales, adaptive evolution depends upon both natural selection and the underlying genetic architecture of traits under selection, which may constrain evolutionary outcomes. Whether such genetic constraints shape phenotypic diversity over macroevolutionary timescales is more controversial, however. One key prediction is that genetic constraints should bias the early stages of species divergence along ā€œgenetic lines of least resistanceā€ defined by the genetic (co)variance matrix, G. This bias is expected to erode over time as species means and G matrices diverge, allowing phenotypes to evolve away from the major axis of variation. We tested for evidence of this signal in West Indian Anolis lizards, an iconic example of adaptive radiation. We found that the major axis of morphological evolution was well aligned with a major axis of genetic variance shared by all species despite separation times of 20ā€“40 million years, suggesting that divergence occurred along a conserved genetic line of least resistance. Further, this signal persisted even as G itself evolved, apparently because the largest evolutionary changes in G were themselves aligned with the line of genetic least resistance. Our results demonstrate that the signature of genetic constraint may persist over much longer timescales than previously appreciated, even in the presence of evolving genetic architecture. This pattern may have arisen either because pervasive constraints have biased the course of adaptive evolution or because the G matrix itself has been shaped by selection to conform to the adaptive landscape

    Data from: Environmental effects on the structure of the G-matrix

    No full text
    Genetic correlations between traits determine the multivariate response to selection in the short term, and thereby play a causal role in evolutionary change. While individual studies have documented environmentally induced changes in genetic correlations, the nature and extent of environmental effects on multivariate genetic architecture across species and environments remain largely uncharacterized. We reviewed the literature for estimates of the genetic variance-covariance (G) matrix in multiple environments, and compared differences in G between environments to the divergence in G between conspecific populations (measured in a common garden). We found that the predicted evolutionary trajectory differed as strongly between environments as it did between populations. Between-environment differences in the underlying structure of G (total genetic variance and the relative magnitude and orientation of genetic correlations) were equal to or greater than between-population differences. Neither environmental novelty nor the difference in mean phenotype predicted these differences in G. Our results suggest that environmental effects on multivariate genetic architecture may be comparable to the divergence that accumulates over dozens or hundreds of generations between populations. We outline avenues of future research to address the limitations of existing data and characterize the extent to which lability in genetic correlations shapes evolution in changing environments

    Data from: Convergent adaptation to dangerous prey proceeds through the same first-step mutation in the garter snake Thamnophis sirtalis

    No full text
    Convergent phenotypes often result from similar underlying genetics, but recent work suggests convergence may also occur in the historical order of substitutions en route to an adaptive outcome. We characterized convergence in the mutational steps to two independent outcomes of tetrodotoxin (TTX) resistance in separate geographic lineages of the common garter snake (Thamnophis sirtalis) that coevolved with toxic newts. Resistance is largely conferred by amino acid changes in the skeletal muscle sodium channel (NaV1.4) that interfere with TTX-binding. We sampled variation in NaV1.4 throughout western North America and found clear evidence that TTX-resistant changes in both lineages began with the same isoleucine-valine mutation (I1561V) within the outer pore of NaV1.4. Other point mutations in the pore, shown to confer much greater resistance, accumulate later in the evolutionary progression and always occur together with the initial I1561V change. A gene tree of NaV1.4 suggests the I1561V mutations in each lineage are not identical-by-decent, but rather they arose independently. Convergence in the evolution of channel resistance is likely the result of shared biases in the two lineages of Th. sirtalis ā€“ only a few mutational routes can confer TTX resistance while maintaining the conserved function of voltage-gated sodium channels

    Bayesian consensus tree

    No full text
    .tre file from the partitioned Bayesian analysis in MrBayes

    Maximum likelihood consensus tree

    No full text
    .tre file from the partitioned maximum likelihood analysis in RAxML

    Phenotypic TTX resistance data

    No full text
    Physiological TTX resistance data of populations assayed for the first time in this study
    • ā€¦
    corecore