27 research outputs found

    Malleability of the cortical hand map following a finger nerve block

    Get PDF
    Electrophysiological studies in monkeys show that finger amputation triggers local remapping within the deprived primary somatosensory cortex (S1). Human neuroimaging research, however, shows persistent S1 representation of the missing hand’s fingers, even decades after amputation. Here, we explore whether this apparent contradiction stems from underestimating the distributed peripheral and central representation of fingers in the hand map. Using pharmacological single-finger nerve block and 7-tesla neuroimaging, we first replicated previous accounts (electrophysiological and other) of local S1 remapping. Local blocking also triggered activity changes to nonblocked fingers across the entire hand area. Using methods exploiting interfinger representational overlap, however, we also show that the blocked finger representation remained persistent despite input loss. Computational modeling suggests that both local stability and global reorganization are driven by distributed processing underlying the topographic map, combined with homeostatic mechanisms. Our findings reveal complex interfinger representational features that play a key role in brain (re)organization, beyond (re)mapping

    Nonlinear scaling of resource allocation in sensory bottlenecks

    No full text
    In many sensory systems, information transmission is constrained by a bottleneck, where the number of output neurons is vastly smaller than the number of input neurons. Efficient coding theory predicts that in these scenarios the brain should allocate its limited resources by removing redundant information. Previous work has typically assumed that receptors are uniformly distributed across the sensory sheet, when in reality these vary in density, often by an order of magnitude. How, then, should the brain efficiently allocate output neurons when the density of input neurons is nonuniform? Here, we show analytically and numerically that resource allocation scales nonlinearly in efficient coding models that maximize information transfer, when inputs arise from separate regions with different receptor densities. Importantly, the proportion of output neurons allocated to a given input region changes depending on the width of the bottleneck, and thus cannot be predicted from input density or region size alone. Narrow bottlenecks favor magnification of high density input regions, while wider bottlenecks often cause contraction. Our results demonstrate that both expansion and contraction of sensory input regions can arise in efficient coding models and that the final allocation crucially depends on the neural resources made available

    Expansion and contraction of resource allocation in sensory bottlenecks

    Get PDF
    Topographic sensory representations often do not scale proportionally to the size of their input regions, with some expanded and others contracted. In vision, the foveal representation is magnified cortically, as are the fingertips in touch. What principles drive this allocation, and how should receptor density, e.g. the high innervation of the fovea or the fingertips, and stimulus statistics, e.g. the higher contact frequencies on the fingertips, contribute? Building on work in efficient coding, we address this problem using linear models that optimally decorrelate the sensory signals. We introduce a sensory bottleneck to impose constraints on resource allocation and derive the optimal neural allocation. We find that bottleneck width is a crucial factor in resource allocation, inducing either expansion or contraction. Both receptor density and stimulus statistics affect allocation and jointly determine convergence for wider bottlenecks. Furthermore, we show a close match between the predicted and empirical cortical allocations in a well-studied model system, the star-nosed mole. Overall, our results suggest that the strength of cortical magnification depends on resource limits

    Similar somatotopy for active and passive digit representation in primary somatosensory cortex

    Get PDF
    Scientists traditionally use passive stimulation to examine the organisation of primary somatosensory cortex (SI). However, given the close, bidirectional relationship between the somatosensory and motor systems, active paradigms involving free movement may uncover alternative SI representational motifs. Here, we used 7 Tesla functional magnetic resonance imaging to compare hallmark features of SI digit representation between active and passive tasks which were unmatched on task or stimulus properties. The spatial location of digit maps, somatotopic organisation, and inter-digit representational structure were largely consistent between tasks, indicating representational consistency. We also observed some task differences. The active task produced higher univariate activity and multivariate representational information content (inter-digit distances). The passive task showed a trend towards greater selectivity for digits versus their neighbours. Our findings highlight that, while the gross features of SI functional organisation are task invariant, it is important to also consider motor contributions to digit representation

    Molecular classification of the PORTEC-3 trial for high-risk endometrial cancer: impact on prognosis and benefit from adjuvant therapy

    Get PDF
    PURPOSEThe randomized Adjuvant Chemoradiotherapy Versus Radiotherapy Alone in Women With High-Risk Endometrial Cancer (PORTEC-3) trial investigated the benefit of combined adjuvant chemotherapy and radiotherapy (CTRT) versus radiotherapy alone (RT) for women with high-risk endometrial cancer (EC). Because The Cancer Genome Atlas defined an EC molecular classification with strong prognostic value, we investigated prognosis and impact of chemotherapy for each molecular subgroup using tissue samples from PORTEC-3 trial participants.METHODSParaffin-embedded tissues of 423 consenting patients were collected. Immunohistochemistry for p53 and mismatch repair (MMR) proteins, and DNA sequencing for POLE exonuclease domain were done to classify tumors as p53 abnormal (p53abn), POLE-ultramutated (POLEmut), MMR-deficient (MMRd), or no specific molecular profile (NSMP). The primary end point was recurrence-free survival (RFS). Kaplan-Meier method, log-rank test, and Cox model were used for analysis.RESULTSMolecular analysis was successful in 410 high-risk EC (97%), identifying the 4 subgroups: p53abn EC (n = 93; 23%), POLEmut (n = 51; 12%), MMRd (n = 137; 33%), and NSMP (n = 129; 32%). Five-year RFS was 48% for patients with p53abn EC, 98% for POLEmut EC, 72% for MMRd EC, and 74% for NSMP EC (P < .001). The 5-year RFS with CTRT versus RT for p53abn EC was 59% versus 36% (P = .019); 100% versus 97% for patients with POLEmut EC (P = .637); 68% versus 76% (P = .428) for MMRd EC; and 80% versus 68% (P = .243) for NSMP EC.CONCLUSIONMolecular classification has strong prognostic value in high-risk EC, with significantly improved RFS with adjuvant CTRT for p53abn tumors, regardless of histologic type. Patients with POLEmut EC had an excellent RFS in both trial arms. EC molecular classification should be incorporated in the risk stratification of these patients as well as in future trials to target specific subgroups of patients
    corecore