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Abstract

Scientists traditionally use passive stimulation to examine the organisation of primary

somatosensory cortex (SI). However, given the close, bidirectional relationship

between the somatosensory and motor systems, active paradigms involving free

movement may uncover alternative SI representational motifs. Here, we used 7 Tesla

functional magnetic resonance imaging to compare hallmark features of SI digit rep-

resentation between active and passive tasks which were unmatched on task or stim-

ulus properties. The spatial location of digit maps, somatotopic organisation, and

inter-digit representational structure were largely consistent between tasks, indicat-

ing representational consistency. We also observed some task differences. The active

task produced higher univariate activity and multivariate representational information

content (inter-digit distances). The passive task showed a trend towards greater

selectivity for digits versus their neighbours. Our findings highlight that, while the

gross features of SI functional organisation are task invariant, it is important to also

consider motor contributions to digit representation.

K E YWORD S

finger representations, fMRI, hand map, motor, representational similarity analysis,

somatosensation, topography

1 | INTRODUCTION

Traditionally, the organisation of the somatosensory system has been

studied using passive tactile stimulation protocols, that is, contacting

stationary digit(s) with tactile stimuli (examples in humans: (Besle

et al., 2014; Sanchez-Panchuelo et al., 2010) and in primates: (Michael

M. Merzenich et al., 1978; Sur et al., 1980)). While providing a highly

controlled means to study the primary somatosensory cortex (SI),

active touch tasks (Kikkert et al., 2016; Schellekens et al., 2018),

involving movement of the digits, may provide somatosensory inputs

more like those that occur habitually. In daily life, the majority of hand

inputs to SI occur from deliberate action (i.e., driven by motor control),

or are directly relevant for supporting motor control (Scott, 2004).

Accordingly, somatosensory hand representation reflects habitual pat-

terns of coordinated action between digits (Ejaz et al., 2015; Ingram

et al., 2008). These usage effects manifest in greater overlap between
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digit representations (e.g., multi-digit receptive fields) for digits used

more frequently together in daily life (Ejaz et al., 2015; M. M.

Merzenich et al., 1984). Indeed, there is growing recognition that

somatosensory and motor processing are intimately and bi-

directionally linked (Aronoff et al., 2010; Gomez et al., 2021; Mao

et al., 2011; Rathelot et al., 2017; Wasaka et al., 2021). For example,

accumulating evidence suggests an important role for SI in motor pro-

cessing (Brecht, 2017), correction of ongoing movements (Pruszynski

et al., 2016), and motor learning (Darainy et al., 2013; Kumar

et al., 2019; Mathis et al., 2017). Preparatory activity has been shown

in SI during motor planning, that is, before afferent information is

available (Ariani et al., 2022; Gale et al., 2021), and SI stimulation can

modulate motor behaviour via direct spinal projections (Karadimas

et al., 2020; Matyas et al., 2010).

Crucially, there is a strong prediction that the fine-grained fea-

tures of digit representation identified under active conditions would

vary from the traditional features established using passive paradigms.

First, muscle proprioceptors and skin stretch receptors will typically

be more activated in active than passive tasks (Bensmaia &

Tillery, 2014; Chouvardas et al., 2008; Saal et al., 2017). Biomechani-

cal enslaving of the digits (Lang & Schieber, 2004; Reilly &

Schieber, 2003) could interfere with selective movement of single

digits in active touch, reducing individuated representation in the

brain. Sensory prediction (efference copy) from the motor system

(Wolpert et al., 1995; Wolpert & Flanagan, 2001) could cause addi-

tional SI excitation (or inhibition through sensory gating: London &

Miller, 2013) during active tasks. Moreover, several other high-order

cognitive processes, which may play a role during active exploration,

have been shown to influence SI representation, including attention

(Eimer et al., 2001; Puckett et al., 2017), reward (Pleger et al., 2008),

and visual input (Kuehn et al., 2014). Alternatively, since these diver-

gent inputs will ultimately converge into the same SI neural network

and feed into somatotopically restricted locations (see the ‘Mecha-

nisms underpinning representational consistency between tasks’

section in the Discussion), it could be argued that the resulting canoni-

cal representational features should be essentially preserved, regard-

less of whether SI is being activated by movement or passive touch.

Few studies, however, have directly compared whether key fea-

tures of somatotopy remain consistent between active and passive

tasks. Recent representational similarity analysis (RSA) by Berlot et al.

(2019) showed that when task and stimulus properties are tightly

matched, the representational structure of the hand representation

does not vary across tasks. They did note some task differences, how-

ever, with greater overall activity in the active task and a trend

towards increased information content under passive conditions

(characterised as increased inter-digit multivariate pattern dissimilar-

ity). Nevertheless, since the multivariate measures used by Berlot are

naïve to spatial relationships, these findings do not directly inform on

several hallmark organisation properties of SI which have been the

focus of most previous studies (e.g., Besle et al., 2014; Kolasinski

et al., 2016).

Here, we compared spatial and multivariate SI features under

active and passive digit tasks that are prominently featured in func-

tional magnetic resonance imaging (fMRI) studies, using available data

from a previous 7 Tesla fMRI study (D. B. Wesselink et al., 2022).

First, we explored spatial correspondence in the location of SI digit

maps between the active and passive task (Section 3.1). Second, we

compared somatotopic organisation between tasks (Section 3.2).

Third, we looked at the multivariate representational structure of the

hand between tasks (Section 3.3). Because the parameters of the

tasks we examine here were not matched (as in Berlot et al., 2019),

this allowed some insight into whether SI representation may diverge

under distinct stimulation and task demands, as is typical across differ-

ent experiments. We predicted major topographic features of digit

somatotopy would be consistent between tasks because, despite dif-

fering types or amount of information, all inputs feed into somatotopi-

cally restricted regions (Kuehn et al., 2017; Qi & Kaas, 2004). To

explore whether peripheral differences across tasks are sufficient to

explain the observed differences between tasks, we employed a com-

putational model (Touchsim: Saal et al., 2017) that simulates SI hand

representation. Using this model, we specifically tested whether dif-

ferences between tasks could be explained by either increased overall

activity (gain modulation) in the active task, or by digit enslavement

during the active task which could increase the co-activation of digits.

2 | MATERIALS AND METHODS

2.1 | Participants

Fifteen healthy volunteers (six females, age ± SEM = 26.44 ± 1.04)

were recruited for this study. All participants except one were right-

handed and all experimental tasks were performed using the right

hand. The fMRI session was part of a larger study, full information and

study protocol can be found at https://osf.io/nh4yp/ and in Wesse-

link et al. (2022). All participants gave written informed consent and

ethical approval for the study was obtained from the Health Research

Authority UK (13/SC/0502). One (right-handed) participant was

excluded as an outlier from the passive task multivariate analysis

(RSA; Section 3.3). This was done as the correlation between this indi-

vidual's hand representational dissimilarity matrix (RDM; an RSA out-

put measure) and the group average RDM for the passive task was

>3σ below the group mean; that is, that individual's multivariate data

showed very low representational ‘typicality’ and was, thus, consid-

ered an outlier.

2.2 | MRI tasks

2.2.1 | General procedure

Participants completed an active and a passive task during a single

session of ultra-high field (7 Tesla, ‘7 T’) fMRI. There were four con-

secutive scans per task (Figure 1 top; order of active vs. passive scans

counterbalanced between participants), with each scan lasting

�4.5 min. The scan structure was identical for the active and the pas-

sive task. Each scan consisted of a pseudo-randomised block design

with 15 experimental blocks in total (3 blocks per digit) interspersed
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with three 12–24 s rest blocks. Each experimental block contained

12 single-digit trials. For the passive task, these trials consisted of

12 taps at �1 Hz (see Passive task section), and for the active task

these trials consisted of 12 movements at a rate of �1 Hz (see Active

task section).

In addition to the two main experimental tasks, a functional

localiser was carried out before the active task to identify digit-

specific clusters (or regions of interest). This allowed us to create

clusters independently from our main tasks, which were used

(as masks) to probe univariate somatotopic neighbourhood rela-

tionships (Section 3.2.2). This localiser was comprised of two scans

lasting �4 min each, with a set inter-digit sequence block design

and no rest blocks (see Digit-specific clusters localiser section (also

see Kikkert et al., 2016; Kolasinski et al., 2016; Mancini

et al., 2012; Sanchez-Panchuelo et al., 2010; Wandell et al., 2007;

Zeharia et al., 2015)).

2.2.2 | Active task

During the active task, participants were required to move individual

digits by making key presses on an MRI-safe custom-made keyboard

(Berlot et al., 2019; Ejaz et al., 2015; D. B. Wesselink et al., 2019; Xu

et al., 2017). Under each key, there was a force transducer which

measured the force applied by each digit. The digit to be moved in the

upcoming block (the ‘target’ digit) was indicated by an instruction dis-

play, where one of five grey bars was in highlighted green (see

Figure 1, left). In each trial participants were required to move a cursor

from the starting position (inside a grey box at the lower part of the

screen) into a green box that appeared above the grey box. This was

achieved by pressing the keyboard key under the target digit. To pro-

mote task engagement and encourage participants to perform the task

well, participants received a point for successful completion after hov-

ering the cursor inside the box for 400 ms. They were then instructed

F IGURE 1 Overview of the two tasks used in this study. Top: Participants completed an active and a passive task inside the scanner (order of

tasks was counterbalanced across participants). Each task consisted of four consecutive scans (two active, two passive). The active task was

always preceded by two functional localiser scans. Left: Example of one block of the active task (trials repeated 12 times). During the active task,

participants were required to press keys on an MRI-safe keyboard with their right hand. Five white lines were presented within a grey box near

the bottom of the screen, representing the five digits at rest. An instruction display indicated the digit to be used in the upcoming block (the

‘target’ digit) was highlighted in green on a hand schematic (top), then the white line representing the target digit turned red. For each trial,

participants were informed that whenever the green box appeared above the grey box, they were to press the key and move the red line into the

green box and hold it there for 400 ms before releasing. Twelve such trials were completed per digit at a rate of �1 Hz in a block before the

instruction display for the next block was shown. Participants were awarded points for successfully completing each trial. Right: Example of one

block of the passive task (trials repeated 12 times). In the passive task, participants rested their right hand in a supine position on a foam support.

Participants had their individual digits tapped by the experimenter at a rate of 1 Hz using a plastic probe. At the same time, they saw five dots

displayed on the screen corresponding to their five digits and the dot corresponding to the stimulated digit would flash on and off at the same

time as the stimulation was occurring. Each digit was tapped 12 times in a block.
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to release the force on the keyboard key—allowing the cursor to fall

back into the starting position grey box, ready for the next trial. Each

trial lasted �1 s and there were 12 trials (i.e., 12� digit movements)

per block before the instructions for the next digit block were shown.

There were 15 blocks in total (3 blocks per digit) in each scan. The

keys required force application to activate but the keys were not mov-

able; therefore, the actual movement of the digit was low (�1 mm).

2.2.3 | Passive task

In the passive stimulation task, participants were asked to rest their

right hand in a comfortable, supine position on a foam support. A

trained experimenter used a plastic probe to tap the distal pad of a

single digit at a 1 Hz rate, before moving on to the next digit. There

were 12 trials (taps) per digit in each digit block before the experi-

menter moved on to the next digit, and 15 blocks per scan (three per

digit). Timing was controlled by audio cues presented to the experi-

menter over headphones. During the task, participants were shown

five white dots on the screen, corresponding to each of the five digits

(Figure 1, right). One dot, indicating the stimulated digit, would flash

at a rate of 1/s whilst the digit was being stimulated to help partici-

pants attend to that digit (note that attention is known to modulate

digit representations in SI; Puckett et al., 2017). To promote engage-

ment during the task, double taps were administered randomly (one

double-tap per digit condition in each scan). Participants were asked

to indicate when they felt the double taps by pressing a button on a

button-box placed in their left hand.

2.2.4 | Digit-specific clusters localiser

An independent functional localiser was carried out using a traveling

wave design task in order to identify digit-specific clusters used for

later analysis. Participants used the same keyboard and visual display

as in the active task (see Section 2.2.2). Two separate scans with

reverse orders, forward (digit 1-2-3-4-5) and backward (digit

5-4-3-2-1) cycles, were used to overcome potential order-related

biases due to the sluggish hemodynamic response (Besle et al., 2013).

In each scan, the cycle was repeated five times continuously with

no rest periods in between. Each cycle consisted of five blocks (one

per digit) which progressed in either the forward or backwards order

of digits. At the start of each block, participants were visually

instructed which of their digits to use in the upcoming block (see

Figure 1). Eight trials were then completed in which the participant

had to move one of their digits eight times at 1 Hz, before the instruc-

tions for the next digit was shown. Each scan lasted �4 min.

2.3 | MRI acquisition

All MRI measurements were acquired using a Siemens 7 T Magnetom

scanner with a 32-channel head coil. Task fMRI data were acquired

using a multiband GE echo planar imaging (EPI) sequence with an

acceleration factor of 2 (Moeller et al., 2010; Ugurbil et al., 2013). A

limited field-of-view (FOV) was used consisting of 56 slices each

1 mm thick over the primary somatosensory cortex with a

192 � 192 mm in-plane FOV (TR: 2000 ms, TE: 25 ms, FA: 85�,

GRAPPA factor: 3). This resulted in spatial resolution of 1 mm isotro-

pic. A whole brain anatomical T1-weighted (MPRAGE) image was also

collected with a 1 mm isotropic spatial resolution (FOV:

192 � 192 � 176, TR: 2200 ms, TE: 2.82 ms, FA: 7�, TI: 1050 ms,

GRAPPA factor: 4).

2.4 | MRI pre-processing

All MRI data pre-processing and analysis was carried out using

FMRIB Software Library (Jenkinson et al., 2012; FSL, version 6.0)

as well as MATLAB scripts (version R2014b) which were developed

in-house. Surface reconstruction was carried out using FreeSurfer

(Dale et al., 1999; www.freesurfer.net, version 6) and results from

the task and travelling wave analysis were projected onto the corti-

cal surface for visualization purposes using Connectome Work-

bench software (Marcus et al., 2011; www.humanconnectome.org,

version 1.2.3).

2.4.1 | Pre-processing

Standard pre-processing steps were carried out using FSL. FSL's

Expert Analysis Tool (FEAT) was used to carry out motion correction

(using MCFLIRT; Jenkinson et al., 2002), brain extraction (BET;

Smith, 2002), spatial smoothing using a 1 mm full width at half maxi-

mum Gaussian kernel (as in Wesselink et al., 2022) and high-pass fil-

tering using a cut-off of 100 s. The output from the MCFLIRT analysis

were visually inspected for excessive motion (defined as >1 mm abso-

lute mean displacement). No participants had an absolute mean dis-

placement greater than 1 mm.

2.4.2 | Image registration

All analyses were carried out in the participants' native space. For

each participant, a mid-space was calculated between the four active

and four passive scans, that is, the average space in which the images

are minimally reoriented. Each scan was then aligned to this session

mid-space using FMRIB's Linear Image Registration Tool linear regis-

tration (FLIRT; Jenkinson et al., 2002; Jenkinson & Smith, 2001). This

registration was also run separately for the functional localiser (travel-

ling wave) scans, where the forward and the backward scans were

realigned to their mid-space. The localiser mid-space was then regis-

tered to the mid-space of the active and passive tasks using FLIRT.

Finally, as these scans were collected as part of a larger project con-

taining two scanning sessions (https://osf.io/nh4yp/), the mid-spaces

of the two scanning sessions were aligned together into a study mid-
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space (please note: only day 1, the baseline session, of this larger data-

set was analysed for the purposes of this article).

To ensure an accurate co-registration of the hand-knob (Yousry

et al., 1997), manual adjustments to the translations and rotations

were carried out in SPM (https://www.fil.ion.ucl.ac.uk/spm/; version

12) This was done by overlaying the EPI on the T1-weighted image

and visually optimising the match of the boundaries and contours of

the hand-knob. Once an accurate registration was achieved, a final

mid-space was calculated to which all scans were re-aligned.

2.5 | Initial analysis

2.5.1 | Active and passive tasks

To identify activity patterns for each digit condition, a voxel-based

general linear model (GLM) analysis was carried out on each active/

passive scan using FEAT. For the active task, the average force output

from the keyboard per TR was modelled, whereas for the passive task

a 12 s stimulation block was modelled. The design was convolved with

the double-gamma haemodynamic response function, as well as its

temporal derivative. The force output could not be read for one run of

participant 7. The GLM for this participant/run was instead modelled

using the (convolved) instructed trial sequence. Eleven contrasts were

set up: each digit versus rest, each digit versus all other digits and all

digits versus rest. The estimates from the four active/passive scans

were then averaged voxel-wise using a fixed effects model with a

cluster forming z-threshold of 3.1 (Eklund et al., 2016) and family-wise

error corrected cluster significance threshold of p < .05.

2.5.2 | Creation of digit-specific clusters (regions-

of-interest)

The identification of digit-specific voxel clusters from the independent

localiser (used for the analysis of somatotopic neighbourhood rela-

tionships, see Section 3.2.2) was carried out as in Kikkert et al. (2016).

In short, a reference model was first created using a convolved hemo-

dynamic response function to account for the hemodynamic delay.

This model consisted of an 8 s ‘on’ period followed by 32 s ‘off’

period to model the movement block of one digit for one cycle. The

model was shifted 20 times by one lag of 2 s (runs were acquired with

a TR of 2 s) to model one entire movement cycle (which lasted 40 s).

This resulted in 20 reference models, and was repeated five times to

model the five cycles in each scan. Following this, the pre-processed

BOLD signal time course for each voxel was correlated with each of

the reference models. This resulted in cross correlation r-values,

which were standardized using the Fisher's r-to-z transformation. Lags

were assigned to each digit (four lags per digit) to average the r-values

across scans for each voxel. This resulted in an r-value for each digit,

which was further averaged across the forward and backward runs.

Each voxel was assigned to one digit using a ‘winner-takes-all’

approach. This was done by finding the maximum correlation for each

voxel across the five averaged values and assigning the voxel to the

digit with max correlation.

To correct for multiple comparisons, a false discovery rate (FDR;

Benjamini & Hochberg, 1995) threshold (q < 0.01) was applied to each

digit individually (Kikkert et al., 2016). The resulting FDR corrected

digit-specific voxels were then used to create digit-specific clusters.

This was done by using an anatomically defined mask of the hand

region (SI hand mask, Figure 2a inset) which was defined for each par-

ticipant based on a FreeSurfer probabilistic structural segmentation of

SI subdivisions (thresholded at 95%). Brodmann Areas 3a, 3b, and

1, spanning a 2 cm strip medial/lateral to the anatomical hand knob

were included in the mask (D. B. Wesselink et al., 2019). Area 2 was

not explicitly included as a probabilistic marker of SI due to its overlap

with posterior parietal area 5 in the FreeSurfer segmentation. Due to

the probabilistic nature of the segmentation, however, the resulting

mask also incorporated considerable parts of area 2 due to the overlap

of areas 1 and 2 in the area 1 segmentation (see figure S4 in

Wesselink et al., 2022). The digit specific activity within this mask was

used to create the digit-specific clusters (see, e.g., Figure 3a).

2.6 | Key analyses

Data from the active and the passive task were analysed in three dif-

ferent ways to probe different hallmark aspects of digit representa-

tion. First, we investigated correspondence in spatial location

between digit maps obtained in the active and passive tasks

(Section 3.1). Second, we examined somatotopic organisation with the

somatotopic index analysis (Section 3.2.1). Within each digit specific

cluster (as identified by the functional localiser) we also examined the

somatotopic neighbourhood activity for each digit using traditional

univariate analysis (Section 3.2.2). Finally, we examined the multivari-

ate representational structure of the hand using (unthresholded) activ-

ity patterns across the SI hand area using RSA (Section 3.3). All data

used for final analysis will be made available online at the Open Sci-

ence Framework upon publication of this manuscript (www.osf.io/

nh4yp).

2.6.1 | Spatial correspondence

To assess the spatial correspondence between digit representations in

the active and passive tasks (Section 3.1), a Dice coefficient

(Dice, 1945) was calculated on activity maps projected onto the corti-

cal surface (as in Kikkert et al., 2016) for each individual participant.

Traditionally, the amount of spatial overlap between, in this case, two

digit representations, is calculated in reference to the total spatial area

of these two digits. However, cases may occur when one digit's repre-

sentation is completely within another's (i.e., completely overlapping),

but the area of the second digit may be much larger than the first,

leading to a small Dice coefficient. To account for these differences,

the Dice coefficient was normalised to the smallest area of the pair of

digits (see Formula 1). This constrains the maximum overlap to be
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equal to the smallest digit representation area. Note: the same analy-

sis was run with the traditional Dice coefficient with comparable

results. This analysis can be found in the Supplementary Materials,

Section 1, and Figure S2.

jA\Bj

min jAj, jBjð Þ

Formula 1. ‘A’ represents the spatial area of one digit representa-

tion and ‘B’ the spatial area of another. This produces values of spatial

overlap ranging from 0 to 1, with 0 indicating no spatial overlap and

1 representing perfect overlap.

For each digit, the activity maps from the active and passive task

(contrasting each digit vs. all the other digits; see Section 3.5.1) were

projected onto the cortical surface, were minimally thresholded

(Z > 2; Kikkert et al., 2016) on the cortical surface and masked using

the BA1 and 3 SI hand mask described above (see Figure 2a and

Figure S1 for all participants). Dice values were computed across tasks

and digits resulting in a 5 � 5 matrix (see Figure 2b), with the diagonal

representing the Dice coefficient of the same digits across active and

passive tasks. The unit of spatial area in this analysis is the number of

nodes (of the 2D parcellation of the cortical surface). Given the analy-

sis is performed on the surface, these nodes follow the individual ana-

tomical features of our participants. This, therefore, means we are

F IGURE 2 Spatial correspondence between active and passive tasks. (a) For an example participant, the minimally thresholded activity for

both tasks is shown projected onto the cortical surface (red = D1, yellow = D2, green = D3, blue = D4, pink = D5). Activity was masked using

an anatomically defined tight SI hand mask including Brodmann areas 3a, 3b, and 1, based on FreeSurfer segmentation, shown in inset. (b) 5 � 5

matrix showing spatial overlap in the SI hand mask between digits/tasks as measured by the Dice coefficient, averaged across all participants. The

diagonal represents the average overlap of the same digits, whereas the off-diagonal elements represent average overlap between neighbouring

and non-neighbouring digits. Hotter colours indicate greater overlap (see legend). (c) Bar chart showing average overlap for the same digits

(averaged values across the diagonal line in (b)), neighbouring digits (averaged values of the off-diagonal in (b)), and non-neighbouring digits across

the tasks (all other cells in (b)). There was greater spatial overlap for the same digit across tasks than for neighbouring digits across tasks. Similarly,

spatial overlap was greater for neighbouring digits across tasks than non-neighbouring digits (measured with t tests). Error bars show standard

error of the mean. Significance is indicated by: ** = p < .001, * = p < .05.
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comparing spatial relationships while taking curvature and anatomy

into account.

Given the topographic features of the digit map, we should see

more overlap when comparing the same digits across tasks, than when

comparing neighbouring digits across tasks. Additionally, more overlap

should be observed when comparing neighbouring digits across tasks

than when comparing non-neighbouring digits. Paired-samples t tests

were carried out to determine whether this was the case across par-

ticipants. Alpha levels were Bonferroni-adjusted to account for these

two comparisons (p < .025).

2.6.2 | Somatotopic organisation

We next looked at single-digit activity profiles to investigate whether

the digit representations followed a comparable somatotopic organisa-

tion between tasks (Section 3.2). To explore this, we first performed an

analysis of whether the digit specific clusters sat in a somatotopic line

along the dorsomedial-ventrolateral axis, that is, to what extent the

expression of digit preference followed the expected somatotopic order

(see the ‘somatotopic index’ analysis, Section 3.2.1). We then looked

within these digit specific clusters at the activity when stimulating each

digit, examining whether a topographic pattern could be observed, that

is, whether activity decreased for stimulation of digits further from the

‘target’ digit (the digit of that cluster). This analysis was referred to as

the ‘neighbourhood relationships’ analysis (Section 3.2.2).

In more detail, for the somatotopic index analysis (Section 3.2.1),

we assigned each node (i.e., voxel on the surface of the brain) a value

indicating its digit preference. This was calculated as the average of

digit identity (1–5), weighted by their respective z-transformed activ-

ity against rest. For example, if the z-statistic is 3 for digit 2 (D2) and

D3, but 0 for the other digits, the resulting index is 2.5. Next, these

indices were correlated with the nodes' dorsomedial-ventrolateral

positions along SI. We used circular correlation as described by Jam-

malamadaka and Sengupta (2001):

rcirc ¼
X

n

k¼1

sin a1k�μ1ð Þ � sin a2k�μ2ð Þð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

k¼1

sin
2
a1k�μ1ð Þ �

X

n

k¼1

sin
2
a2k�μ2ð Þ

v

u

u

t

where ɑpk are the values from group p transformed to radians and μp

is the group mean. This metric essentially tests whether moving ven-

trolaterally along SI coincides with an ulnar (D1–D5) rotation along

the hand, that is, somatotopic organisation. A more somatotopic orga-

nisation is indicated by higher correlation values. The use of circular

correlation was deemed to be preferable to regular correlation

methods in this instance due to the frequent presence of ‘double-

thumb’ representations, that is, the presence of two maps of the

thumb in the SI hand map, typically with a D1 cluster ventrally to the

D5 cluster (Kikkert et al., 2016). The correlational coefficients for the

active and passive task were compared using a paired t test. This

allowed us to determine whether somatotopic organisation was more

pronounced in one condition compared to the other. That is, whether

the correlation was significantly higher in one condition.

For the neighbourhood relationships analysis (Section 3.2.2), we

looked at activity patterns for each digit within each digit specific clus-

ter (identified with the independent localiser, see Figure 3a for an

example) versus rest. For each digit, the activity versus rest was

extracted and then averaged for each digit specific cluster

(Figure 3c,d). Data were shifted above zero to remove any negative

values by subtracting the lowest value for each participant.

Within each digit-specific cluster, we then calculated the differ-

ence in activity between the target digit and its neighbours by sub-

tracting the neighbour digit activity value from the target digit. This

difference was then divided by the target digit activity level, for exam-

ple, in cluster 3: ([D3-D2]/D3). This was repeated for the target digit

and non-neighbours, for example, in cluster 3: ([D3-D5]/D3). There-

fore, larger values mean there is a greater difference in activity

between the target digit and the neighbouring or non-neighbouring

digits. The analysis was performed separately for each task. If activity

follows the expected somatotopic neighbourhood relationships, activ-

ity differences should be greater when comparing the target digit and

its non-neighbours, than comparing the target digit and its immediate

neighbours. Note: for this analysis, D5 was considered as a non-

neighbour to D1. Due to the prominence of double-thumb represen-

tations (see above), this analysis was repeated with D5 as a neighbour

to D1—see Supplementary Materials, Section 3.

Differences in these neighbourhood relationships (i.e., activity dif-

ferences between neighbouring or non-neighbouring digits) was com-

pared across the two tasks using a repeated measures ANOVA.

Significant interactions were followed up using post hoc tests.

ANOVA has previously been found to be relatively robust to viola-

tions of normality (Glass, 1972; Harwell, 1992) and was, therefore,

carried out despite one-fourth of the variables being non-normally

distributed (revealed using the Shapiro–Wilks test). For these non-

normally distributed variables, follow-up tests were conducted using

non-parametric alternatives (in this case, the Wilcoxon paired-ranks

test). Four follow-up tests were conducted: two comparing differ-

ences between neighbouring and non-neighbouring digits within

tasks, and two comparing neighbours and non-neighbours across

tasks. Alpha levels were Bonferroni-adjusted for these four compari-

sons (p < .0125).

2.6.3 | Multivariate representational structure

We used RSA (Kriegeskorte et al., 2008) to assess the multivariate

relationships between the activity patterns generated across digits

and tasks (Section 3.3). The (dis)similarity between activity patterns

within the SI hand mask (based on BA1 and 3) was measured for each

digit pair using the cross-validated squared Mahalanobis distance (Nili

et al., 2014). This was applied using the FSL-compatible toolbox

(D. Wesselink & Maimon-Mor, 2017). First, the activity patterns were

pre-whitened using the residuals from the GLM, that is, noisy (groups

of) voxels are downweighted, and then cross-nobis distances were

calculated for each task (active/passive) separately, using each pair of

imaging runs and averaging those results. Greater distances indicate
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larger differences in multivariate representation; that is, the represen-

tations are less similar.

The above analysis produced 10 inter-digit distance values per

task, forming an RDM for each participant. We assessed two mea-

sures: (1) information content, which examines how different the

activity pattern over voxels is for digit pairs on average. This was

assessed by calculating the average value of the distances in an RDM

(i.e., averaging across the values in the RDM, discounting values on

the diagonal) and (2) representational structure, which looks at the

pattern of inter-digit distances across digit pairs. Specifically, we

looked at how well the RDM of one individual correlated with the

average RDM of all other participants (excluding the participant of

interest). This was done within-task (e.g., participantX active and group

mean active) and between-task (e.g., participantX passive and group

mean passive). This allowed us to determine whether representational

structure of the hand was more similar for individuals within a task

versus between tasks. Note: RDMs were normalised prior to averag-

ing to not bias the mean towards more dissimilar RDMs.

As an aid to visualise the RDMs (and not used in any statistical

analysis), we also performed multidimensional scaling (MDS). This

analysis projects the higher-dimensional RDM into a lower-

dimensional space while preserving the inter-digit distances as accu-

rately as possible (Borg & Groenen, 2003). These plots allow multi-

variate inter-digit relationships to be visualised spatially, for

example, digits with more similar representations across voxels are

projected as spatially closer together. MDS was performed on indi-

vidual RDMs and averaged after Procrustes alignment (without scal-

ing) to remove any arbitrary rotations introduced by MDS.

Alignment was based on RDMs including both active and passive

tasks (as well as a rest condition) as not to bias the visualisation.

Dimensions were sorted on the basis of high variance between digits

to demonstrate hand representation at the expense of non-digit-

specific variation from rest. That is, the dimensions chosen for the X

and Y axis were selected to best reflect (in terms of explained vari-

ance) inter-digit differences, rather than to visualise the differences

of the digits from rest.

F IGURE 3 Neighbourhood relationships between activity patterns within digit-specific clusters for the active and passive tasks. (a) Example

of digit-specific clusters created using the independent localiser for one participant, approximately located in BA3b. Activity for each digit

(vs. rest) was extracted within each digit-specific cluster, done separately for the active and passive tasks. (b) Overall average activity levels were

significantly higher in the active task than in the passive task. (c, d) For both tasks, a somatotopic activity gradient can be seen within each digit-

specific cluster: with the target digit producing on average the greatest activity within its own digit-specific cluster, followed by its neighbouring

digits, and lowest activity seen in non-neighbouring digits. * indicates significant differences at p < .05.
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Post hoc Bayesian analyses were carried out where non-

significant results were found for key comparisons using JASP

(Version 0.16.2; using as a prior a Cauchy distribution centred on

0 with a width of .707). This was to provide further information on

the strength of these null results and improve interpretation for the

reader.

2.6.4 | Computational modelling

An exploratory post hoc computational model was used to investigate

potential factors underlying the differences observed between tasks

(see Supplementary Materials, Section 4, for more details). The Touch-

Sim model (Saal et al., 2017) was used to generate the cutaneous pas-

sive peripheral inputs and reconstruct the typical activation of the

different afferent classes across the hand. Specifically, SI is modelled

with five units (representing the five cortical digit-selective clusters)

that receive input from the periphery and are also connected laterally,

with each cluster exciting or inhibiting other clusters (Figure S4a,b). The

parameters of this model were previously fit based on the passive task

dataset (D. B. Wesselink et al., 2022), in order to replicate the cortical

responses to passive digit stimulation from the univariate task data.

We tested whether simple input changes in the model, informed

by basic physiology and biomechanics, might explain the observed

changes in the active task. In particular, we first tested whether simply

more overall activity (gain modulation) could explain differences

between tasks by adding a gain parameter for the active task. Second,

we tested whether digit enslavement patterns during the active task

could account for differences between tasks by increasing the pooled

input for each digit based on typical enslavement patterns during active

movements (as measured in Ejaz et al., 2015, see Figure S6a left panel).

3 | RESULTS

The performance of participants inside the scanner showed that partici-

pants followed the instructions well. During the active task, in 94.6% of

the trials the target digit (i.e., the digit participants had been instructed

to move) produced the strongest press force (92.2% in the worst partic-

ipant). Consequently, there was a clear difference in average force out-

put for the target (1.44 N, ±0.09 SEM) and non-target (0.27 N, ±0.03)

digits. To promote engagement in the passive task, participants were

instructed to identify occasional ‘catch’ trials (double instead of single

taps) that occurred once per digit/scan. Participants correctly identified

the catch trials in 94.3% of the cases and there was no significant dif-

ference between digits (F(4, 70) = 1.85, p = .129).

3.1 | Spatial correspondence is observed between

tasks

To quantify the extent of spatial correspondence between digit maps

across the active and passive tasks, we calculated the Dice coefficient

(Dice, 1945). This coefficient was calculated across tasks and digits,

resulting in a 5 � 5 matrix (see Figure 2b). Complete spatial overlap of

two representations is indicated by a Dice value of 1 and no overlap

by 0. Spatial overlap was maximal for comparison of the same digit

between tasks (mean Dice = 0.68; see Figure 2c), compared with

neighbouring digits between tasks (mean Dice = 0.32, t(14) = 16.22,

p < .001). Moreover, neighbouring digits showed greater overlap

between tasks than non-neighbouring digits (mean Dice = 0.08, t(14)

= 12.59, p < .001). Please see Supplementary Materials, Section 2 and

Figure S3 for Dice values for the same digit within a task (split-half

analysis).

3.2 | Consistency in somatotopic organisation

between tasks

3.2.1 | Somatotopic index

We examined whether the classical hallmark of S1 organisation, the

somatotopic gradient, is manifested similarly following passive versus

active stimulation by correlating an index of digit preference with

position along the central sulcus using circular correlation (see

Section 2.6.2). This did not result in a significant group difference

between the passive and active task (mean rpassive: .63; mean ractive:

.71; t(14) = .655, p = .523, BF = 1.86). Coarse somatotopic organisa-

tion was, therefore, not different between the two tasks.

3.2.2 | Neighbourhood relationships analysis

We next examined activity level profiles for different digits within and

across our digit-specific clusters to investigate whether the activity

patterns followed similar somatotopic neighbourhood relationships

between tasks. Note that this was conducted within digit-specific

clusters created using the independent localiser (see Section 2.5.2 and

example in Figure 3a). As a reminder, the term ‘target digit’ refers to

activity resulting from touch/movement of a single digit within its

own digit-specific cluster.

First, we wanted to confirm that digit ‘selectivity’—with respect

to the identity of the digit-specific cluster—was found for both tasks.

TABLE 1 Proportion of participants showing digit selectivity

within each digit selective cluster for both tasks. Note C (i.e., for

C1-5), stands for cluster

Digit-selective cluster Active Passive

C1 15/15 15/15

C2 13/15 15/15

C3 13/15 14/15

C4 14/15 14/15

C5 14/15 12/15

Total 69/75 70/75
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Selectivity is defined here as maximal activity in response to touch/

movement of a target digit within its own digit-specific cluster. This

was generally identified for both the active (69/75 winner-takes-all

‘hits’) and passive tasks (70/75 hits; see Table 1).

Second, we looked at the amount of activity produced by the

tasks (averaged activity across all ROIs in the two tasks). We found

activity levels were greater overall in the active task in comparison to

the passive task, t(14) = 2.85, p = .013 (see Figure 3b).

We then examined whether neighbourhood activity patterns

were consistent between tasks. For both active and passive tasks,

activity within each cluster generally appears to decrease as a function

of distance from the target digit (Figure 3c,d). To examine these neigh-

bourhood relationships statistically, we calculated the difference in

activity between the target digit and its neighbours/non-neighbours

and divided this by the target digit activity level (Figure 4a). This

resulted in difference values where larger values indicated a greater

difference between target digit and the neighbour or non-neighbour

digits. A 2 � 2 repeated measure ANOVA was carried out with factors

neighbourhood (neighbouring vs. non-neighbouring digits), and task

(active vs. passive task). This returned a significant main effect of

neighbourhood (F(1, 14) = 650.89, p < .001), a non-significant main

effect of task (F(1, 14) = 1.50, p = .241) and a significant interaction

of neighbourhood � task (F(1, 14) = 28.038, p < .001).

Two within-task follow-up Wilcoxon matched-pair signed-rank

tests were conducted. Supporting somatotopy in these neighbour-

hood relationships, these tests showed that for both tasks the activ-

ity difference was greater between target digits and non-neighbours

than between target digits and neighbours (Active: Z = �3.408,

p = .001, Passive: Z = -3.408, p = .001; see light green vs. dark

green bars in Figure 4b). Two further follow-up tests conducted

between-tasks demonstrated the interaction occurred because the

activity difference between target digits and their neighbours was

larger in the passive (mean passive difference = 0.41) than in the

active task (mean active difference = 0.35); Z = �2.158, p = .031

(see dark green bars in Figure 4b). Note: this difference becomes

non-significant when Bonferroni corrections for four t tests are per-

formed (adjusted p = .124). The activity difference between the tar-

get digit and non-neighbouring digits was not different between the

two tasks (mean passive difference = 0.66; mean active

difference = 0.66; Z = �0.227, p = .820).

In sum, in both the active and passive task there was evidence of

somatotopy in these neighbourhood relationships. The passive task,

however, produced a slightly more pronounced somatotopic selectiv-

ity, though this difference held only for difference between target

digits and their neighbours and did not survive corrections for multiple

comparisons.

3.3 | Multivariate representational structure is

comparable between tasks but information content is

higher in the active task

Next, we used RSA to examine the multivariate representational

structure of the hand (RSA; Ejaz et al., 2015; Nili et al., 2014).

Figure 5a shows the inter-digit distance matrices (RDMs) calculated

for the active and passive tasks, based on the (unthresholded) activity

patterns across the entire SI hand mask. Greater distances indicate

larger differences in multivariate representation.

We first compared the overall strength of information content

between tasks. This was examined by comparing the mean distances

across all digit-pairs (i.e., across each matrix) between tasks. We found

mean distance was significantly greater for the active than the passive

task, t(13) = 10.9, p < .001. As shown in Figure 5b, this means that on

average each digit is represented more independently of the others

F IGURE 4 Comparing the neighbourhood relationships across the active and passive tasks. In this analysis, we examined these relationships

between digits within the highly selective digit-specific clusters defined by our independent localiser task. (a) Within each digit-specific cluster,

pairwise digit activity levels were contrasted. Each digit pair was characterised based on whether it contained a digit that was neighbouring or

non-neighbouring the target digit (dark green vs. light green bars). Results from this analysis are shown for the active and passive tasks in (b). For

both tasks, the activity difference was greater between target digits and non-neighbours than between target digits and neighbours, which is a

hallmark of somatotopic mapping. We also found the activity difference between target digits and their neighbours is greater in the passive than

active task, driving a significant interaction of neighbourhood � task. However, this difference did not survive correction for multiple

comparisons. ** indicates significant differences at p < .001, # indicates a trend.
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(illustrated with greater physical distances) in the active task (see

modelling of this result in Supplementary Materials, Section 4).

We next looked at whether the shape of the multivariate hand

representation is consistent between tasks. This was achieved by first

calculating within-task correlation coefficients between each individ-

ual participant's RDM and the group average RDM obtained by aver-

aging the RDMs from all other participants for that task. This was

done for both the active and the passive task and resulted in two cor-

relation coefficient values (one for each task) for each participant

reflecting the correlation strength between that individual participants

RDM and the group average RDM. We then compared these within-

task correlation coefficients across tasks and found no significant dif-

ferences (t(13) = 0.16, p = .873; Bayes Factor10 = .273), ‘substantial

evidence’ for H1 (Wetzels et al., 2011) between the correlation of

individual participants' active RDM and the active group RDM (mean

rho = .90), and the correlation of individual participants passive RDM

and the passive group RDM (mean rho = .91; see Table 2). This indi-

cates that for both tasks, individuals are similarly consistent with

respect to the group's mean.

Next, we looked at the between-task correlations. If both tasks

evoke a distinct representational structure, between-task correlations

should be lower than within-task correlations. However, the correla-

tions were high for individual participants active RDMs with the pas-

sive mean RDM (mean rho = 0.89), and for individual passive RDMs

with the active mean RDM (mean rho = 0.90). As demonstrated in

Table 2, the within-task correlations were not significantly different to

the between-task correlations (assessed by paired t tests;

F IGURE 5 Multivariate hand

representation during active and passive

tasks. (a) Group mean representational

dissimilarity matrices (RDMs) for the

active (left) and passive (right) tasks. The

colour bars indicate dissimilarity, such

that hotter colours indicate greater

dissimilarity across digit pairs. Please

note, different scales have been used for

the active and passive RDMs to allow

comparability of the pattern of inter-digit

relationships which is obscured when the

same scale is used (as the active task

produced significantly greater

dissimilarity overall, see Section 3.3).

(b) 2D depiction of the data in (a), using

multidimensional scaling (MDS). MDS

projects the higher-dimensional RDM

into a lower-dimensional space while

preserving the inter-digit distances as

accurately as possible (smaller distances

indicates more similar representations).

Ellipses indicate between-participant

standard error, calculated separately per

task. Red = D1, yellow = D2,

green = D3, blue = D4, and pink = D5,

black ellipses represent the active task,

whereas coloured ellipses represent the

passive task. Note: MDS plots are purely

for visualisation purposes and were not

used for statistical analysis. PCs: Principal

components maximising inter-digit

dissimilarity.

TABLE 2 Within- and between-task correlation values and

associated t tests comparing these correlation values. BF = Bayes

Factor for the alternative hypothesis (H1) over the null (H0), that

is, BF10

Between-task

correlations

Within-task correlations

Active with active

mean (mean

rho = 0.90)

Passive with passive

mean (mean

rho = 0.91)

Active with passive

mean (mean

rho = 0.89)

t(14) = 0.89;

p = .388; BF = .370

t(13) = 0.39;

p = .706;

BF = .288

Passive with active

mean (mean

rho = 0.90)

t(13) = 0.21;

p = .834; BF = .275

t(13) = 0.69;

p = .503;

BF = .332
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.388 < p's < .834). Thus, the structure of the RDM is relatively stable

independent of task demands.

3.4 | Post hoc computational modelling

A computational model was used in order to explore factors which

may have contributed to the differences we observed between tasks.

Specifically, we explored whether simple scaling of activity (gain mod-

ulation) or whether digit enslavement patterns during the active task

could explain differences between tasks. Results are summarised here,

but due to the limited explanatory power of our model, the full discus-

sion of the results are included in the Supplementary Materials,

Section 4.

For the observed differences in univariate activity between the

active and passive tasks, we found that neither global scaling, nor typi-

cal enslavement patterns seen in active tasks, could explain the differ-

ences observed between active and passive tasks. Rather, more

complex digit specific changes were required at either the input level

or at the cortical level to capture the differences across tasks. Specifi-

cally, during the active task, inputs from the thumb were reduced,

whereas increased inputs were required for digits 2 and 3 for all digit

stimulations (see Supplementary Figure S6b). These digit specific

changes could not be attributed to a single hypothesised factor; how-

ever, the digit specific changes were able to reproduce the shrinking

of the passive RSA dissimilarity compared with the active.

Finally, the model was able to explain differences between the

active and the passive task RSA analysis based on a simple gain modu-

lation effect (Figure S6c), suggesting that differences between tasks

observed in this analysis are due to a simple scaling effect.

4 | DISCUSSION

Here, we compared digit activity created by two distinct tasks, per-

formed by the same group of participants: one involving passive cuta-

neous stimulation of the distal digit pad, and the other involving

whole digit active movements. We examined how these two tasks

affected fundamental spatial features of somatotopy (spatial corre-

spondence of digit maps and somatotopic activity), as well as non-

spatial inter-digit representational features (as revealed by multivari-

ate analysis) in somatosensory cortex. We found that despite marked

differences between afferent input, efferent output and top-down

factors, the activity patterns generated were largely consistent

between these two tasks in SI. Specifically, we showed that the digit

maps produced by active and passive tasks were largely spatially over-

lapping, both relative to somatotopy and in absolute position. Further,

active and passive tasks both produce maximal activity to the stimu-

lated digit within the stimulated digit's own ROI and a clear somatoto-

pic pattern of activity with respect to its neighbours and non-

neighbours. Finally, we showed there was a strong correlation

between the multivariate hand patterns produced in the active and

passive tasks, indicating high-level features of hand representation are

highly similar between tasks.

Notwithstanding the preservation of these critical features at

both the macro-level (somatotopic map), and the meso-structure of

fine-grained features (multivariate analysis), we also identified some

notable differences between active and passive tasks. Specifically,

consistent with previous reports (Berlot et al., 2019; Wiestler

et al., 2011), our univariate analysis indicated the active task produced

a greater overall amount of activity compared to the passive task. In

the active task, we also found the activity patterns generated by dif-

ferent digits were more clearly distinguishable overall. That is, on

average there was greater separability of the multivariate activity pat-

terns for all pairings of digits in the active than passive task, that is,

higher information content (see below for more discussion). Neverthe-

less, our univariate activity analysis produced some evidence suggest-

ing greater activity differences between target digits and their

neighbours (i.e., greater selectivity) in the passive task, though this

effect was limited and did not extend to the non-neighbouring digits.

Together, this suggests that while information content was overall

greater in the active task, there were still some representational fea-

tures that were more prominently identified in the passive task using

univariate selectivity. Therefore, our findings highlight that multivari-

ate and univariate activity metrics represent different aspects of neu-

ral digit representation, and the nuance of what each analysis

uniquely conveys should be considered when interpreting their

results.

4.1 | Task differences in SI plasticity research

Historically, there has been speculation that the use of different tac-

tile stimulation protocols could contribute to some differences in

somatotopic maps identified between different studies, though largely

without formal substantiation. For example, in the field of human

brain remapping following amputation, research using passive stimula-

tion to the lower face has documented massive shifts of facial repre-

sentation into the missing hand cortex (Flor et al., 1995); though see

(Valyear et al., 2020). Other paradigms using active facial movements

indicate relatively stable representation, with little activity in the miss-

ing hand area from facial movements (Kikkert et al., 2018; Tamar

R. Makin et al., 2013; Root et al., 2021), and shifts of representation

documented only locally within the face area (T. R. Makin et al., 2015;

Raffin et al., 2016). Previous studies attempted to bridge these notice-

able gaps by matching across task demands as closely as possible

(Berlot et al., 2019). Here, by using tasks not tightly matched in stimu-

lation features, we allow stimulation to vary between tasks in a man-

ner more typical of, for example, variation between studies

(Dempsey-Jones et al., 2019; Kuehn et al., 2014; Martuzzi

et al., 2014; Striem-Amit et al., 2018; Yu et al., 2019). Our results pro-

vide direct evidence to demonstrate that active and passive tasks

elicit spatially overlapping somatotopies in typically developed

individuals.
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The between-task consistency reported here is further supported

by clinical plasticity studies that reveal similar patterns of sensorimo-

tor reorganisation across active (Foell et al., 2014; Lotze et al., 1999)

and passive (Flor et al., 1995; Karl et al., 2001) stimulation paradigms.

For example, Striem-Amit et al. (2018) previously studied sensorimo-

tor somatotopy of individuals born with no hands due to congenital

upper limb malformation. The authors reported similar inter-body part

remapping using both active and passive stimulation. Together with

our current findings, this evidence indicates that both neurotypical

somatotopic organisation and remapping are qualitatively and quanti-

tatively similar when expressed across active and passive tasks. Given

that the mechanisms of activation are distinct, however, we cannot

rule out the possibility that active and passive tasks might cause dif-

fering representations under certain clinical conditions; for example,

in motor neuron disorder where there are impairments in efferent

outflow with largely maintained afferent input.

Importantly, we note that while the spatial overlap between the

active and passive maps was high, it was not complete (see Supple-

mentary Materials, Section 2). It is also important to consider that our

methodology might not be sufficiently sensitive to identify other rep-

resentational motifs that may vary across the tasks. For example, lami-

nar differences may be more readily identifiable using other recording

techniques than gradient echo imaging (as here), which biases towards

activity in superficial layers (Goense et al., 2012). Despite this, our

acquisition methodology represents the state of the art for fMRI, and

therefore, our study provides a very reasonable benchmark for the

level of evidence acquired in neuroimaging studies. Insofar as most of

the representational features we identified did not vary between

tasks, we believe our findings challenge arguments that differences in

stimulation type are the sole cause of large-scale differences in

reported (re)organisation of the body map.

4.2 | Mechanisms underpinning representational

consistency between tasks

While the bottom-up and top-down differences between tasks may

lead one to expect considerable differences in SI representation, there

are several neurophysiological mechanisms that could support the

representational consistency we report here. For example, it is known

that somatosensory inputs feed into morphologically defined digit

regions, particularly in BA1 and 3 where somatotopy is most pro-

nounced. Extensive work in primates demonstrates the existence of

myelin-poor regions (‘septa’) between myelin-rich representations of

major body parts at cortical (e.g., Jain et al., 1998; Qi & Kaas, 2004)

and subcortical levels (e.g., Kaas et al., 1984). Various lines of evidence

suggest septa create borders between neurons that strongly interact

and neurons that weakly interact (Hickmott & Merzenich, 2002).

Accordingly, septum is best observed at the hand-face border (now

documented in humans with fMRI: Kuehn et al., 2017), but also pre-

sent, though to a reduced extent, between the digits (in primate area

3b: Jain et al., 1998; Qi & Kaas, 2004). Thus, if somatosensory inputs

from the active and passive tasks both feed into similar

morphologically defined regions in SI, this could contribute to similar

patterns of hand representation between tasks.

Indeed, the existence of precise somatotopic feedforward projec-

tions throughout the somatosensory system could underlie general

consistency in the eventual hand representation produced in SI. The

majority of inputs to SI come from the dorsal column system, the larg-

est somatic pathway of the spine (ten Dokelaar, 2002). The dorsal col-

umn is known to consist of somatotopically organised ascending

fibres (Walker & Weaver, 1942). Consequently, tactile inputs feed

from specific digits in the periphery, to the matching digit-specific

areas in the cuneate (Culberson & Brushart, 1989; Florence

et al., 1989), thalamus (Kaas et al., 1984) and early SI (Kaas

et al., 1979). Variation does exist in the decomposition and path of

somatic information from different mechanoreceptor systems from

the periphery to SI (Bensmaia et al., 2008). However, on the whole,

the preservation of somatotopy from receptors to central processing

regions could support the generation of similar representations of the

digits from active and passive tasks in SI.

Related to the above, under most conditions, active tasks can be

expected to activate a different or wider range of peripheral receptors

than passive tasks (discussed further below). While divergent inputs to

SI of this kind could feasibly cause large differences in SI digit-represen-

tations, animal work suggests different types of input to SI, for example,

from different mechanoreceptor classes, feed into highly interspersed

modular zones in SI, that is, cortical columns (Chen et al., 2001;

Friedman et al., 2004; Mountcastle, 1957). For example, vibrational

stimuli in the tap, flutter and vibration ranges activate spatially separate

columns in areas 3b (Chen et al., 2001) and 1 (Friedman et al., 2004) of

around 200 μm in diameter. These columns appear to be arranged in a

continuous, pinwheel organisation, as with orientation columns in the

visual system (Yacoub et al., 2008). While differences in columnar acti-

vation may occur between our tasks at the micro-level, this could still

result in similar macro-level representation of the digits, as is derived

from traditional fMRI measures, even at the high imaging resolution we

use here. Thus, as discussed above, while different measures may eluci-

date task differences in SI, our study is able to speak to our aim of

exploring whether hallmark features of SI hand representation, as com-

monly measured with fMRI, vary under active and passive tasks.

As mentioned in Section 1, somatosensory cortex contains direct

projections to the body. For example, Karadimas et al. (2020) demon-

strated that stimulating corticospinal projections from somatosensory

cortex to cervical excitatory neurons can increase locomotion, while

inhibition can decrease or terminate locomotion. Research such as this

raises the interesting, if speculative, idea that the SI digit maps gener-

ated by active movement that we present here contain both sensory

and motor components. In comparison, SI digit maps resulting from

our passive task should represent sensory only components. Compar-

ing digit representation under our active and passive tasks, therefore,

allow us to compare sensory + motor (active) versus sensory (passive)

representations in somatosensory cortex, respectively. While it would

be interesting to examine the motor only versus sensory only aspects

of digit representation in SI, it is difficult to study in healthy human

participants and fMRI.
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4.3 | What explains the between-task differences

observed?

Despite general consistency in various features of digit representation

tested, we also identified some differences between tasks. Most nota-

bly, we found significantly more overall activity in the active task. This

could be the result of the greater number and range of afferent, effer-

ent and top-down inputs associated with active movement. Even

solely considering cutaneous afference, active tasks tend to produce

more forceful indentations of the tips of the digits than light touch, air

puffs or electrostimulation. A deeper indentation leading to more

widespread mechanoreceptor activation, and a general change in the

volume of the digit as the key was pressed would likely lead to more

complex and widespread central activity resulting from the active task

(Saal et al., 2017). Active tasks may also cause more activation of skin

stretch and proprioceptors in the joints during movement

(Bensmaia & Miller, 2014; Chouvardas et al., 2008; Saal et al., 2017),

leading to greater activity overall. It is also likely that reward (Pleger

et al., 2008) and attentional effects (Puckett et al., 2017), known to

modulate digit representations in SI, contribute to activity differences

seen here between passive stimulation and active movement. While

in our study, we cannot delineate whether or how top-down and

bottom-up contributions to this activity difference, Berlot et al. (2019)

tightly matched task and simulation properties, and also reported

greater overall activity in active compared to passive tasks. This may

suggest a greater role for efference and motor contributions to creat-

ing this difference, than other sensory or top-down differences.

We also found higher information content in the active task, as

reflected in higher multivariate dissimilarity values overall. This could

also be caused by the greater amount and variety of sensory inputs

produced by active tasks, which could further improve the signal-to-

noise ratio and, in turn, afford improved discriminability between

digits. Paradoxically, it could also be the fact that individual digits are

limited in their ability to move independently (‘enslaving’; Lang &

Schieber, 2004) that could improve discriminability under active tasks.

As most SI input results from active touch, sensory information pro-

duced by the active task is more aligned with typical, ecologically rele-

vant patterns of sensory input. Indeed, while early SI areas

(particularly 3b) contain predominantly neurons with single-digit

receptive fields, it is being increasingly recognised they also contain

considerable numbers of neurons with complex, multi-digit receptive

field structures (Iwamura et al., 1994; Thakur et al., 2012), like those

that predominate in later somatosensory areas (such as BA 1 and 2;

reviewed in Iwamura et al., 2002). Considering that in daily life, single

digits are rarely tactually targeted in complete isolation and active

movement likely involves more complex inputs from across the hand,

this may produce a more optimal input to these multi-digit RFs. This

could, in turn, lead to greater dissimilarity between digit representa-

tion in the active task. In this context, we wish to emphasise that we

did not find a clear contribution of digit co-movement (e.g., due to

enslavement) in the active task to our findings. This is demonstrated

implicitly in the strong correlation of multivariate representational

structures between tasks, but also explicitly in our computational

model. Instead, inter-digit co-use might become a fundamental aspect

of digit representation (see Ejaz et al., 2015 for the mechanism of this

overlap as it pertains to the natural statistics of action). Further, evi-

dence suggests a key role for central mechanisms in generating motor

enslavement; thus, co-activation patterns are likely to hold even in

the absence of large overt movements (as with our active task). Please

note, while it is possible some of the co-activation seen in the active

task (e.g., high activity levels following stimulation of digit four and

five within cluster four) could be attributed to co-movement of these

two digits in the active task due to enslaving (Lang & Schieber, 2004),

a highly similar pattern of co-activation is seen in the passive task

(no movement). This suggests these co-activity patterns cannot be

attributed to motor enslaving during the task alone, but rather likely

represent a fundamental aspect of digit representation, for example,

the overlap of digit four and five representations (see Ejaz et al., 2015

for the mechanism of this overlap as it pertains to the natural statistics

of action).

As stated previously, after identifying these task differences, we

used a computational model of somatosensory cortical responses

(previously described in Wesselink et al., 2022), to explore two key

mechanistic factors that could give rise to the differences observed,

gain modulation and digit enslavement patterns. The modelling

revealed that simple scaling (gain modulation) could account for the

differences between active and passive tasks as reflected in the multi-

variate data. In contrast, gain modulation did not describe the differ-

ences between tasks as seen in the univariate data. Digit

enslavement, a key input difference between active and passive tasks,

also did not account for the univariate task differences seen. Instead,

more complex digit specific changes at the input or the cortical level

were required to capture the differences across tasks on the univari-

ate analysis which could not be attributed to a single hypothesised

factor. In other words, more research in needed in order to capture

and interpret the subtle somatotopic differences between active and

passive tasks.

5 | LIMITATIONS

In this study, we wished to investigate whether somatotopic and rep-

resentational structures are shared across active and passive tasks,

when stimulus features are not tightly matched. It should be noted,

however, that not matching stimulus features does limit interpretation

of the differences observed. For example, the increased activity

observed in the active task could be due to several factors that varied

between the tasks including the force, efference copies, reward,

attentional demands, or the reduced amount of overall somatosensory

stimulation provided in the passive task. Further, differences in con-

stant vs. periodic sensory input would have differentially engaged rap-

idly and slowly adapting mechanoreceptors (Johnson, 2001; Vallbo &

Hagbarth, 1968) and led to differing levels of peripheral adaptation

(Klocker et al., 2016). Given the current study focused on whether, in

spite of these differences, general consistency in hand representation

could be found (rather than parametrically determining how specific
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stimulus features affect the hand map), this was not considered to

invalidate our experimental aims.

6 | CONCLUSIONS

Our study suggests active and passive tasks may be similarly used for

exploring the somatosensory hand representation using fMRI. This

has practical considerations for the implementation of studies on the

ground—as active tasks can be easier to set up and may not require as

much specialist equipment. However, it should be highlighted that

decisions surrounding the use of active or passive task paradigms

should always be informed by the scientific question to be addressed.

Whilst active tasks may provide more ecologically valid input to the

somatosensory cortex, passive paradigms may be superior in situa-

tions where motor demands cannot be reliably matched. It has further

practical implications for situations where either active or passive

stimulation may not be possible: such as in people with limited mobil-

ity, or amputees who are missing physical digits but can produce

active movements in their phantoms (Kikkert et al., 2016). On a more

fundamental level, our findings have deeper implications for our

understanding of SI, as the product of a tight, and bidirectional rela-

tionship with the motor system.
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