102 research outputs found

    Oncogenic GNAQ mutations are not correlated with disease-free survival in uveal melanoma

    Get PDF
    BackgroundRecently, oncogenic G protein alpha subunit q (GNAQ) mutations have been described in about 50% of uveal melanomas and in the blue nevi of the skin.MethodsGNAQ exon 5 was amplified from 75 ciliary body and choroidal melanoma DNAs and sequenced directly. GNAQ mutation status was correlated with disease-free survival (DFS), as well as other clinical and histopathological factors, and with chromosomal variations detected by FISH and CGH.ResultsOf the 75 tumour DNA samples analysed, 40 (53.3%) harboured oncogenic mutations in GNAQ codon 209. Univariate and multivariate analysis showed that GNAQ mutation status was not significantly correlated with DFS.ConclusionThe GNAQ mutation status is not suitable to predict DFS. However, the high frequency of GNAQ mutations may render it a promising target for therapeutic intervention

    Deletion at chromosome arm 9p in relation to BRAF/NRAS mutations and prognostic significance for primary melanoma

    Get PDF
    We report an investigation of gene dosage at 9p21.3 and mutations in BRAF and NRAS, as predictors of relapse and histological markers of poor melanoma prognosis. Formalin-fixed primary melanomas from 74 relapsed and 42 nonrelapsed patients were sequenced for common BRAF and NRAS mutations (N = 71 results) and gene dosage at 9p21.3 including the genes CDKN2A (which encodes CDKN2A and P14ARF), CDKN2B (CDKN2B), and MTAP was measured using multiplexed ligation-dependant probe amplification (MLPA), (N = 75 results). BRAF/NRAS mutations were detected in 77% of relapsers and 58% of nonrelapsers (Fisher's exact P = 0.17), and did not predict ulceration or mitotic rate. There was no relationship between BRAF/NRAS mutations and gene dosage at 9p21.3. Reduced gene dosage at MTAP showed a borderline association with BRAF mutation (P = 0.04) and reduced gene dosage at the interferon gene cluster was borderline associated with wild type NRAS (P = 0.05). Reduced gene dosage in the CDKN2A regions coding for CDKN2A was associated with an increased risk of relapse (P = 0.03). Reduced gene dosage across 9p21.3 was associated with increased tumor thickness, mitotic rate, and ulceration (P = 0.02, 0.02, and 0.002, respectively), specifically in coding regions impacting on CDKN2B and P14ARF and CDKN2A. Loss at MTAP (P = 0.05) and the interferon gene cluster (P = 0.03) on 9p21 was also associated with tumor ulceration. There was no association between reduced gene dosage at 9p21.3 and subtype or site of tumor. This study presents supportive evidence that CDKN2B, P14ARF, and CDKN2A may all play a tumor suppressor role in melanoma progression. © 2010 Wiley-Liss, Inc

    A Systematic Study of Gene Mutations in Urothelial Carcinoma; Inactivating Mutations in TSC2 and PIK3R1

    Get PDF
    Abstract BACKGROUND: Urothelial carcinoma (UC) is characterized by frequent gene mutations of which activating mutations in FGFR3 are the most frequent. Several downstream targets of FGFR3 are also mutated in UC, e.g., PIK3CA, AKT1, and RAS. Most mutation studies of UCs have been focused on single or a few genes at the time or been performed on small sample series. This has limited the possibility to investigate co-occurrence of mutations. METHODOLOGY/PRINCIPAL FINDINGS: We performed mutation analyses of 16 genes, FGFR3, PIK3CA, PIK3R1 PTEN, AKT1, KRAS, HRAS, NRAS, BRAF, ARAF, RAF1, TSC1, TSC2, APC, CTNNB1, and TP53, in 145 cases of UC. We show that FGFR3 and PIK3CA mutations are positively associated. In addition, we identified PIK3R1 as a target for mutations. We demonstrate a negative association at borderline significance between FGFR3 and RAS mutations, and show that these mutations are not strictly mutually exclusive. We show that mutations in BRAF, ARAF, RAF1 rarely occurs in UC. Our data emphasize the possible importance of APC signaling as 6% of the investigated tumors either showed inactivating APC or activating CTNNB1 mutations. TSC1, as well as TSC2, that constitute the mTOR regulatory tuberous sclerosis complex were found to be mutated at a combined frequency of 15%. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a significant association between FGFR3 and PIK3CA mutations in UC. Moreover, the identification of mutations in PIK3R1 further emphasizes the importance of the PI3-kinase pathway in UC. The presence of TSC2 mutations, in addition to TSC1 mutations, underlines the involvement of mTOR signaling in UC

    Global gene expression analysis in time series following N-acetyl L-cysteine induced epithelial differentiation of human normal and cancer cells in vitro

    Get PDF
    BACKGROUND: Cancer prevention trials using different types of antioxidant supplements have been carried out at several occasions and one of the investigated compounds has been the antioxidant N-acetyl-L-cysteine (NAC). Studies at the cellular level have previously demonstrated that a single supplementation of NAC induces a ten-fold more rapid differentiation in normal primary human keratinocytes as well as a reversion of a colon carcinoma cell line from neoplastic proliferation to apical-basolateral differentiation [1]. The investigated cells showed an early change in the organization of the cytoskeleton, several newly established adherens junctions with E-cadherin/β-catenin complexes and increased focal adhesions, all features characterizing the differentiation process. METHODS: In order to investigate the molecular mechanisms underlying the proliferation arrest and accelerated differentiation induced by NAC treatment of NHEK and Caco-2 cells in vitro, we performed global gene expression analysis of NAC treated cells in a time series (1, 12 and 24 hours post NAC treatment) using the Affymetrix GeneChip™ Human Genome U95Av2 chip, which contains approximately 12,000 previously characterized sequences. The treated samples were compared to the corresponding untreated culture at the same time point. RESULTS: Microarray data analysis revealed an increasing number of differentially expressed transcripts over time upon NAC treatment. The early response (1 hour) was transient, while a constitutive trend was commonly found among genes differentially regulated at later time points (12 and 24 hours). Connections to the induction of differentiation and inhibition of growth were identified for a majority of up- and down-regulated genes. All of the observed transcriptional changes, except for seven genes, were unique to either cell line. Only one gene, ID-1, was mutually regulated at 1 hour post treatment and might represent a common mediator of early NAC action. The detection of several genes that previously have been identified as stimulated or repressed during the differentiation of NHEK and Caco-2 provided validation of results. In addition, real-time kinetic PCR analysis of selected genes also verified the differential regulation as identified by the microarray platform. CONCLUSION: NAC induces a limited and transient early response followed by a more consistent and extensively different expression at later time points in both the normal and cancer cell lines investigated. The responses are largely related to inhibition of proliferation and stimulation of differentiation in both cell types but are almost completely lineage specific. ID-1 is indicated as an early mediator of NAC action

    A Novel Classification of Lung Cancer into Molecular Subtypes

    Get PDF
    The remarkably heterogeneous nature of lung cancer has become more apparent over the last decade. In general, advanced lung cancer is an aggressive malignancy with a poor prognosis. The discovery of multiple molecular mechanisms underlying the development, progression, and prognosis of lung cancer, however, has created new opportunities for targeted therapy and improved outcome. In this paper, we define “molecular subtypes” of lung cancer based on specific actionable genetic aberrations. Each subtype is associated with molecular tests that define the subtype and drugs that may potentially treat it. We hope this paper will be a useful guide to clinicians and researchers alike by assisting in therapy decision making and acting as a platform for further study. In this new era of cancer treatment, the ‘one-size-fits-all’ paradigm is being forcibly pushed aside—allowing for more effective, personalized oncologic care to emerge

    Molecular Signatures of Cancer

    No full text
    Cancer is an important public health concern in the western world, responsible for around 25% of all deaths. Although improvements have been made in the diagnosis of cancer, treatment of disseminated disease is inefficient, highlighting the need for new and improved methods of diagnosis and therapy. Tumours arise when the balance between proliferation and differentiation is perturbed and result from genetic and epigenetic alterations. Due to the heterogeneity of cancer, analysis of the disease is difficult and a wide range of methods is required. In this thesis, a number of techniques are demonstrated for the analysis of genetic, epigenetic and transcriptional alterations involved in cancer, with the purpose of identifying a number of molecular signatures. Pyrosequencing proved to be a valuable tool for the analysis of both point mutations and CpG methylation. Using this method, we showed that oncogenes BRAF and NRAS, members of the Ras-Raf-MAPK pathway, were mutated in 82% of melanoma tumours and were mutually exclusive. Furthermore, tumours with BRAF mutations were more often associated with infiltrating lymphocytes, suggesting a possible target for immunotherapy. In addition, methylation of the promoter region of the DNA repair gene MGMT was studied to find a possible correlation to clinical response to chemotherapy. Results showed a higher frequency of promoter methylation in non-responders as compared to responders, providing a possible predictive role and a potential basis for individually tailored chemotherapy. Microarray technology was used for transcriptional analysis of epithelial cells, with the purpose of characterization of molecular pathways of anti-tumourigenic agents and to identify possible target genes. Normal keratinocytes and colon cancer cells were treated with the antioxidant N-acetyl L-cysteine (NAC) in a time series and gene expression profiling revealed that inhibition of proliferation and stimulation of differentiation was induced upon treatment. ID-1, a secreted protein, was proposed as a possible early mediator of NAC action. In a similar study, colon cancer cells were treated with the naturally occurring bile acid ursodeoxycholic acid (UDCA) in a time series and analysed by microarray and FACS analysis. Results suggest a chemopreventive role of UDCA by G1 arrest and inhibition of cell proliferation, possibly through the secreted protein GDF15. These investigations give further evidence as to the diversity of cancer and its underlying mechanisms. Through the application of several molecular methods, we have found a number of potential targets for cancer therapy. Follow up studies are already in progress and may hopefully lead to novel methods of treatment.QC 2011012

    Molecular Signatures of Cancer

    No full text
    Cancer is an important public health concern in the western world, responsible for around 25% of all deaths. Although improvements have been made in the diagnosis of cancer, treatment of disseminated disease is inefficient, highlighting the need for new and improved methods of diagnosis and therapy. Tumours arise when the balance between proliferation and differentiation is perturbed and result from genetic and epigenetic alterations. Due to the heterogeneity of cancer, analysis of the disease is difficult and a wide range of methods is required. In this thesis, a number of techniques are demonstrated for the analysis of genetic, epigenetic and transcriptional alterations involved in cancer, with the purpose of identifying a number of molecular signatures. Pyrosequencing proved to be a valuable tool for the analysis of both point mutations and CpG methylation. Using this method, we showed that oncogenes BRAF and NRAS, members of the Ras-Raf-MAPK pathway, were mutated in 82% of melanoma tumours and were mutually exclusive. Furthermore, tumours with BRAF mutations were more often associated with infiltrating lymphocytes, suggesting a possible target for immunotherapy. In addition, methylation of the promoter region of the DNA repair gene MGMT was studied to find a possible correlation to clinical response to chemotherapy. Results showed a higher frequency of promoter methylation in non-responders as compared to responders, providing a possible predictive role and a potential basis for individually tailored chemotherapy. Microarray technology was used for transcriptional analysis of epithelial cells, with the purpose of characterization of molecular pathways of anti-tumourigenic agents and to identify possible target genes. Normal keratinocytes and colon cancer cells were treated with the antioxidant N-acetyl L-cysteine (NAC) in a time series and gene expression profiling revealed that inhibition of proliferation and stimulation of differentiation was induced upon treatment. ID-1, a secreted protein, was proposed as a possible early mediator of NAC action. In a similar study, colon cancer cells were treated with the naturally occurring bile acid ursodeoxycholic acid (UDCA) in a time series and analysed by microarray and FACS analysis. Results suggest a chemopreventive role of UDCA by G1 arrest and inhibition of cell proliferation, possibly through the secreted protein GDF15. These investigations give further evidence as to the diversity of cancer and its underlying mechanisms. Through the application of several molecular methods, we have found a number of potential targets for cancer therapy. Follow up studies are already in progress and may hopefully lead to novel methods of treatment.QC 2011012
    corecore