465 research outputs found

    Properties of cage rearrangements observed near the colloidal glass transition

    Full text link
    We use confocal microscopy to study the motions of particles in concentrated colloidal systems. Near the glass transition, diffusive motion is inhibited, as particles spend time trapped in transient ``cages'' formed by neighboring particles. We measure the cage sizes and lifetimes, which respectively shrink and grow as the glass transition approaches. Cage rearrangements are more prevalent in regions with lower local concentrations and higher disorder. Neighboring rearranging particles typically move in parallel directions, although a nontrivial fraction move in anti-parallel directions, usually from pairs of particles with initial separations corresponding to the local maxima and minima of the pair correlation function g(r)g(r), respectively.Comment: 5 pages, 4 figures; text & figures revised in v

    Eddy Covariance flux errors due to random and systematic timing errors during data acquisition

    Get PDF
    Modern eddy covariance (EC) systems collect high-frequency data (10–20 Hz) via digital outputs of instru ments. This is an important evolution with respect to the tra ditional and widely used mixed analog/digital systems, as fully digital systems help overcome the traditional limita tions of transmission reliability, data quality, and complete ness of the datasets

    Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot

    Get PDF
    We have performed detailed photoluminescence (PL) and absorption spectroscopy on the same single self-assembled quantum dot in a charge-tunable device. The transition from neutral to charged exciton in the PL occurs at a more negative voltage than the corresponding transition in absorption. We have developed a model of the Coulomb blockade to account for this observation. At large negative bias, the absorption broadens as a result of electron and hole tunneling. We observe resonant features in this regime whenever the quantum dot hole level is resonant with two-dimensional hole states located at the capping layer-blocking barrier interface in our structure.Comment: 6 pages, 6 figure

    Inevitable Irreversibility Generated by the Glass Transition of the Binary Lattice Gas Model

    Full text link
    We numerically investigate the thermodynamic properties of the glass state. As the object of our study, we employ a binary lattice gas model. Through Monte Carlo simulations, we find that this model actually experiences a glass transition. We introduce a potential into the model that represents a piston with which we compress the glass. By measuring the work performed in this process, we find that irreversible works exist at the glass state even in the quasistatic limit. This implies that yield stress is created by the glass transition.Comment: 4 pages, 5 figure

    Dynamic heterogeneities in the out-of-equilibrium dynamics of simple spherical spin models

    Full text link
    The response of spherical two-spin interaction models, the spherical ferromagnet (s-FM) and the spherical Sherrington-Kirkpatrick (s-SK) model, is calculated for the protocol of the so-called nonresonant hole burning experiment (NHB) for temperatures below the respective critical temperatures. It is shown that it is possible to select dynamic features in the out-of-equilibrium dynamics of both models, one of the hallmarks of dynamic heterogeneities. The behavior of the s-SK model and the s-FM in three dimensions is very similar, showing dynamic heterogeneities in the long time behavior, i.e. in the aging regime. The appearence of dynamic heterogeneities in the s-SK model explicitly demonstrates that these are not necessarily related to {\it spatial} heterogeneities. For the s-FM it is shown that the nature of the dynamic heterogeneities changes as a function of dimensionality. With incresing dimension the frequency selectivity of the NHB diminishes and the dynamics in the mean-field limit of the s-FM model becomes homogeneous.Comment: 16 pages, 8 figure

    Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids

    Full text link
    The viscosity of glass-forming liquids increases by many orders of magnitude if their temperature is lowered by a mere factor of 2-3 [1,2]. Recent studies suggest that this widespread phenomenon is accompanied by spatially heterogeneous dynamics [3,4], and a growing dynamic correlation length quantifying the extent of correlated particle motion [5-7]. Here we use a novel numerical method to detect and quantify spatial correlations which reveal a surprising non-monotonic temperature evolution of spatial dynamical correlations, accompanied by a second length scale that grows monotonically and has a very different nature. Our results directly unveil a dramatic qualitative change in atomic motions near the mode-coupling crossover temperature [8] which involves no fitting or indirect theoretical interpretation. Our results impose severe new constraints on the theoretical description of the glass transition, and open several research perspectives, in particular for experiments, to confirm and quantify our observations in real materials.Comment: 7 page

    Dynamics of supercooled liquids: density fluctuations and Mode Coupling Theory

    Full text link
    We write equations of motion for density variables that are equivalent to Newtons equations. We then propose a set of trial equations parameterised by two unknown functions to describe the exact equations. These are chosen to best fit the exact Newtonian equations. Following established ideas, we choose to separate these trial functions into a set representing integrable motions of density waves, and a set containing all effects of non-integrability. It transpires that the static structure factor is fixed by this minimum condition to be the solution of the Yvon-Born-Green (YBG) equation. The residual interactions between density waves are explicitly isolated in their Newtonian representation and expanded by choosing the dominant objects in the phase space of the system, that can be represented by a dissipative term with memory and a random noise. This provides a mapping between deterministic and stochastic dynamics. Imposing the Fluctuation-Dissipation Theorem (FDT) allows us to calculate the memory kernel. We write exactly the expression for it, following two different routes, i.e. using explicitly Newtons equations, or instead, their implicit form, that must be projected onto density pairs, as in the development of the well-established Mode Coupling Theory (MCT). We compare these two ways of proceeding, showing the necessity to enforce a new equation of constraint for the two schemes to be consistent. Thus, while in the first `Newtonian' representation a simple gaussian approximation for the random process leads easily to the Mean Spherical Approximation (MSA) for the statics and to MCT for the dynamics of the system, in the second case higher levels of approximation are required to have a fully consistent theory

    Is there something of the MCT in orientationally disordered crystals ?

    Full text link
    Molecular Dynamics simulations have been performed on the orientationally disordered crystal chloroadamantane: a model system where dynamics are almost completely controlled by rotations. A critical temperature T_c = 225 K as predicted by the Mode Coupling Theory can be clearly determined both in the alpha and beta dynamical regimes. This investigation also shows the existence of a second remarkable dynamical crossover at the temperature T_x > T_c consistent with a previous NMR and MD study [1]. This allows us to confirm clearly the existence of a 'landscape-influenced' regime occurring in the temperature range [T_c-T_x] as recently proposed [2,3].Comment: 4 pages, 5 figures, REVTEX

    Phase transitions in the Potts spin glass model

    Get PDF
    We have studied the Potts spin glass with 2-state Ising spins and s-state Potts variables using a cluster Monte Carlo dynamics. The model recovers the +- J Ising spin glass (SG) for s=1 and exhibits for all s a SG transition at T_{SG}(s) and a percolation transition at higher temperature T_p(s). We have shown that for all values of s≠1s\neq 1 at T_p(s) there is a thermodynamical transition in the universality class of a ferromagnetic s-state Potts model. The efficiency of the cluster dynamics is compared with that of standard spin flip dynamics.Comment: 8 pages, Latex, with 8 EPS fig

    Decoupling of diffusion from structural relaxation and spatial heterogeneity in a supercooled simple liquid

    Full text link
    We report a molecular dynamics simulation of a supercooled simple monatomic glass-forming liquid. It is found that the onset of the supercooled regime results in formation of distinct domains of slow diffusion which are confined to the long-lived icosahedrally structured clusters associated with deeper minima in the energy landscape. As these domains, possessing a low-dimensional geometry, grow with cooling and percolate below TcT_c, the critical temperature of the mode coupling theory, a sharp slowing down of the structural relaxation relative to diffusion is observed. It is concluded that this latter anomaly cannot be accounted for by the spatial variation in atomic mobility; instead, we explain it as a direct result of the configuration-space constraints imposed by the transient structural correlations. We also conjecture that the observed tendency for low-dimensional clustering may be regarded as a possible mechanism of fragility.Comment: To be published in PR
    • …
    corecore