844 research outputs found

    Epidural Stimulation Induced Modulation of Spinal Locomotor Networks in Adult Spinal Rats

    Get PDF
    The importance of the in vivo dynamic nature of the circuitries within the spinal cord that generate locomotion is becoming increasingly evident. We examined the characteristics of hindlimb EMG activity evoked in response to epidural stimulation at the S1 spinal cord segment in complete midthoracic spinal cord-transected rats at different stages of postlesion recovery. A progressive and phase-dependent modulation of monosynaptic (middle) and long-latency (late) stimulation-evoked EMG responses was observed throughout the step cycle. During the first 3 weeks after injury, the amplitude of the middle response was potentiated during the EMG bursts, whereas after 4 weeks, both the middle and late responses were phase-dependently modulated. The middle- and late-response magnitudes were closely linked to the amplitude and duration of the EMG bursts during locomotion facilitated by epidural stimulation. The optimum stimulation frequency that maintained consistent activity of the long-latency responses ranged from 40 to 60 Hz, whereas the short-latency responses were consistent from 5 to 130 Hz. These data demonstrate that both middle and late evoked potentials within a motor pool are strictly gated during in vivo bipedal stepping as a function of the general excitability of the motor pool and, thus, as a function of the phase of the step cycle. These data demonstrate that spinal cord epidural stimulation can facilitate locomotion in a time-dependent manner after lesion. The long-latency responses to epidural stimulation are correlated with the recovery of weight-bearing bipedal locomotion and may reflect activation of interneuronal central pattern-generating circuits

    Cosmos 2229

    Get PDF
    The 6 weeks preflight activities of the Cosmos project during 1993 included: modification of EMG connector to improve the reliability of EMG recording; 24 hour cage activity recording from all but two of the flight animals (monkeys); attempts to record from flight candidates during foot lever task; and force transducer calibrations on all flight candidate animals. The 4 week postflight recordings included: postflight recordings from flight animals; postflight recordings on 3 control (non-flight) animals; postflight recalibration of force transducers on 1 flight and 4 control (non-flight) animals; and attempts to record EMG and video data from the flight animals during postflight locomotion and postural activity. The flight EMG recordings suggest that significant changes in muscle control may occur in spaceflight. It is also clear from recordings that levels of EMG recorded during spaceflight can attain values similar to those measured on earth. Amplifier gain settings should therefore probably not be changed for spaceflight

    Muscle Feasibility for Cosmos Rhesus

    Get PDF
    The following tasks were proposed for the Cosmos project: 1) Complete recordings of all preflight candidates during performance of a foot pedal motor control task while in the space capsule mock-up. 2) Complete recordings of all preflight candidates during locomotion and postural tasks. 3) Complete recordings of 24-hour spontaneous cage activity in the two flight monkeys before and after flight and of at least three control (non-flight) monkeys after the flight has been completed. 4) Complete recordings of the foot pedal and motor control tasks during flight and postflight as scheduled. 5) Complete recordings of the vertical drop test pre, during and postflight for the two flight and three control monkeys. 6) Complete recordings of locomotion and posture tests of the two flight monkeys postflight. 7) Complete recordings of locomotion and postural tests of at least three control (non-flight) monkeys during the postflight period. 8) Recalibrate buckles of the two flight and of at least three control monkeys postflight. 9) Complete analysis of the 24 hour EMG recordings of all monkeys. 10) Complete analysis of the foot pedal, locomotor and postural motor control tasks for the two flight and three control monkeys. It was proposed that efforts in the first postflight year be concentrated on the two flight animals and three postflight animals

    And yet it moves: Recovery of volitional control after spinal cord injury

    Get PDF
    Preclinical and clinical neurophysiological and neurorehabilitation research has generated rather surprising levels of recovery of volitional sensory-motor function in persons with chronic motor paralysis following a spinal cord injury. The key factor in this recovery is largely activity-dependent plasticity of spinal and supraspinal networks. This key factor can be triggered by neuromodulation of these networks with electrical and pharmacological interventions. This review addresses some of the systems-level physiological mechanisms that might explain the effects of electrical modulation and how repetitive training facilitates the recovery of volitional motor control. In particular, we substantiate the hypotheses that: (1) in the majority of spinal lesions, a critical number and type of neurons in the region of the injury survive, but cannot conduct action potentials, and thus are electrically non-responsive; (2) these neuronal networks within the lesioned area can be neuromodulated to a transformed state of electrical competency; (3) these two factors enable the potential for extensive activity-dependent reorganization of neuronal networks in the spinal cord and brain, and (4) propriospinal networks play a critical role in driving this activity-dependent reorganization after injury. Real-time proprioceptive input to spinal networks provides the template for reorganization of spinal networks that play a leading role in the level of coordination of motor pools required to perform a given functional task. Repetitive exposure of multi-segmental sensory-motor networks to the dynamics of task-specific sensory input as occurs with repetitive training can functionally reshape spinal and supraspinal connectivity thus re-enabling one to perform complex motor tasks, even years post injury

    Acute neuromodulation restores spinally-induced motor responses after severe spinal cord injury

    Get PDF
    Epidural electrical spinal stimulation can facilitate recovery of volitional motor control in individuals that have been completely paralyzed for more than a year. We recently reported a novel neuromodulation method named Dynamic Stimulation (DS), which short-lastingly increased spinal excitability and generated a robust modulation of locomotor networks in fully-anesthetized intact adult rats. In the present study, we applied repetitive DS patterns to four lumbosacral segments acutely after a contusive injury at lumbar level. Repetitive DS delivery restored the spinally-evoked motor EMG responses that were previously suppressed by a calibrated spinal cord contusion. Sham experiments without DS delivery did not allow any spontaneous recovery. Thus, DS uniquely provides the potential for a greater long-term functional recovery after paralysis

    Effects of diet and/or exercise in enhancing spinal cord sensorimotor learning.

    Get PDF
    Given that the spinal cord is capable of learning sensorimotor tasks and that dietary interventions can influence learning involving supraspinal centers, we asked whether the presence of omega-3 fatty acid docosahexaenoic acid (DHA) and the curry spice curcumin (Cur) by themselves or in combination with voluntary exercise could affect spinal cord learning in adult spinal mice. Using an instrumental learning paradigm to assess spinal learning we observed that mice fed a diet containing DHA/Cur performed better in the spinal learning paradigm than mice fed a diet deficient in DHA/Cur. The enhanced performance was accompanied by increases in the mRNA levels of molecular markers of learning, i.e., BDNF, CREB, CaMKII, and syntaxin 3. Concurrent exposure to exercise was complementary to the dietary treatment effects on spinal learning. The diet containing DHA/Cur resulted in higher levels of DHA and lower levels of omega-6 fatty acid arachidonic acid (AA) in the spinal cord than the diet deficient in DHA/Cur. The level of spinal learning was inversely related to the ratio of AA:DHA. These results emphasize the capacity of select dietary factors and exercise to foster spinal cord learning. Given the non-invasiveness and safety of the modulation of diet and exercise, these interventions should be considered in light of their potential to enhance relearning of sensorimotor tasks during rehabilitative training paradigms after a spinal cord injury

    Drop Splashing on a Dry Smooth Surface

    Full text link
    The corona splash due to the impact of a liquid drop on a smooth dry substrate is investigated with high speed photography. A striking phenomenon is observed: splashing can be completely suppressed by decreasing the pressure of the surrounding gas. The threshold pressure where a splash first occurs is measured as a function of the impact velocity and found to scale with the molecular weight of the gas and the viscosity of the liquid. Both experimental scaling relations support a model in which compressible effects in the gas are responsible for splashing in liquid solid impacts.Comment: 11 pages, 4 figure

    Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats

    Get PDF
    Background: Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. Methods: We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1–100 Hz and 1–10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. Results: In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Conclusions: Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles
    corecore