34 research outputs found
Pharmacologic prophylaxis for atrial fibrillation following cardiac surgery: a systematic review
Atrial Fibrillation (AF) is the most common arrhythmia occurring after cardiac surgery. Its incidence varies depending on type of surgery. Postoperative AF may cause hemodynamic deterioration, predispose to stroke and increase mortality. Effective treatment for prophylaxis of postoperative AF is vital as reduces hospitalization and overall morbidity. Beta - blockers, have been proved to prevent effectively atrial fibrillation following cardiac surgery and should be routinely used if there are no contraindications. Sotalol may be more effective than standard b-blockers for the prevention of AF without causing an excess of side effects. Amiodarone is useful when beta-blocker therapy is not possible or as additional prophylaxis in high risk patients. Other agents such as magnesium, calcium channels blocker or non-antiarrhythmic drugs as glycose-insulin - potassium, non-steroidal anti-inflammatory drugs, corticosteroids, N-acetylcysteine and statins have been studied as alternative treatment for postoperative AF prophylaxis
Recommended from our members
Understanding isoprene photooxidation using observations and modeling over a subtropical forest in the southeastern US
The emission, dispersion, and photochemistry of isoprene (C5H8) and related chemical species in the convective boundary layer (CBL) during sunlit daytime were studied over a mixed forest in the southeastern United States by combining ground-based and aircraft observations. Fluxes of isoprene and monoterpenes were quantified at the top of the forest canopy using a high-resolution proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). Snapshot (2 min sampling duration) vertical profiles of isoprene, methyl vinyl ketone (MVK)Cmethacrolein (MACR), and monoterpenes were collected from aircraft every hour in the CBL (100-1000 m). Both ground-based and airborne collected volatile organic compound (VOC) data are used to constrain the initial conditions of a mixed-layer chemistry model (MXLCH), which is applied to examine the chemical evolution of the O3-NOx-HOx-VOC system and how it is affected by boundary layer dynamics in the CBL. The chemical loss rate of isoprene (1 h) is similar to the turbulent mixing timescale (0.1-0.5 h), which indicates that isoprene concentrations are equally dependent on both photooxidation and boundary layer dynamics. Analysis of a modelderived concentration budget suggests that diurnal evolution of isoprene inside the CBL is mainly controlled by surface emissions and chemical loss; the diurnal evolution of O3 is dominated by entrainment. The NO to HO2 ratio (NO :HO2) is used as an indicator of anthropogenic impact on the CBL chemical composition and spans a wide range (1-163). The fate of hydroxyl-substituted isoprene peroxyl radical (HOC5H8OO q; ISOPOO) is strongly affected by NO:HO2, shifting from NO-dominant to NO-HO2-balanced conditions from early morning to noontime. This chemical regime change is reflected in the diurnal evolution of isoprene hydroxynitrates (ISOPN) and isoprene hydroxy hydroperoxides (ISOPOOH)
Who Really Needs a Rhinoplasty?
ven if the indication for rhinoplasty is to do with nasal function, the patient undergoing rhinoplasty usually still considers cosmetic aspects. Why patients agree to put themselves in discomfort, accept the risk, and shoulder the cost of a procedure, the main aim of which is an improvement in physical appearance, remains poorly understood. In the majority of cases, there is no direct correlation between the willingness to have the procedure and objective measures of nasal deformity. Likewise, psychometric measurements bear little relationship to how deformed the patient's appearance really is. For those cases where cosmetic considerations predominate, the degree of distress is greater than in those having the procedure solely to improve nasal function. Patients' satisfaction after rhinoplasty undertaken to address both functional and cosmetic needs depends more on aesthetic result than on improvement in function. Since patients undergoing rhinoplasty are often preoccupied with deformities that others would neither notice nor be concerned about, it shows clearly that this group has already undergone alterations in the way they think. Candidates for rhinoplasty are unhappy with their looks than those contemplating other cosmetic procedures, and each time they look in the mirror, they recall their dissatisfaction, a situation which has generally already begun at the age of puberty. In 80% of cases, the motivating factor is a wish for an alteration in facial appearance or the experience of seeing someone else benefit from rhinoplasty
Recommended from our members
Observation of isoprene hydroxynitrates in the southeastern United States and implications for the fate of NOx
Isoprene hydroxynitrates (IN) are tracers of the photochemical oxidation of isoprene in high NO environments. Production and loss of IN have a significant influence on the NO cycle and tropospheric O chemistry. To better understand IN chemistry, a series of photochemical reaction chamber experiments was conducted to determine the IN yield from isoprene photooxidation at high NO concentrations (> 100 ppt). By combining experimental data and calculated isomer distributions, a total IN yield of 9(+4/-3) % was derived. The result was applied in a zero-dimensional model to simulate production and loss of ambient IN observed in a temperate forest atmosphere, during the Southern Oxidant and Aerosol Study (SOAS) field campaign, from 27 May to 11 July 2013. The 9 % yield was consistent with the observed IN/(MVK+MACR) ratios observed during SOAS. By comparing field observations with model simulations, we identified NO as the limiting factor for ambient IN production during SOAS, but vertical mixing at dawn might also contribute (∼ 27 %) to IN dynamics. A close examination of isoprene's oxidation products indicates that its oxidation transitioned from a high-NO dominant chemical regime in the morning into a low-NO dominant regime in the afternoon. A significant amount of IN produced in the morning high NO regime could be oxidized in the low NO regime, and a possible reaction scheme was proposed. x x
Observation of isoprene hydroxynitrates in the Southeastern United States and implications for the fate of NO<sub><i>x</i></sub>
Isoprene hydroxynitrates (IN) are tracers of the photochemical oxidation of isoprene in high NOx environments. Production and loss of IN have a significant influence on the NOx cycle and tropospheric O3 chemistry. To better understand IN chemistry, a series of photochemical reaction chamber experiments was conducted to determine the IN yield from isoprene photooxidation at high NO concentrations (> 100 ppt). By combining experimental data and calculated isomer distributions, a total IN yield of 9(+4/-3) % was derived. The result was applied in a zero-dimensional model to simulate production and loss of ambient IN observed in a temperate forest atmosphere, during the Southern Oxidant and Aerosol Study (SOAS) field campaign, from 27 May to 11 July 2013. The 9 % yield was consistent with the observed IN/(MVK+MACR) ratios observed during SOAS. By comparing field observations with model simulations, we identified NO as the limiting factor for ambient IN production during SOAS, but vertical mixing at dawn might also contribute (∼ 27 %) to IN dynamics. A close examination of isoprene's oxidation products indicates that its oxidation transitioned from a high-NO dominant chemical regime in the morning into a low-NO dominant regime in the afternoon. A significant amount of IN produced in the morning high NO regime could be oxidized in the low NO regime, and a possible reaction scheme was proposed