6 research outputs found

    Antiproliferative and Antiestrogenic Activities of Bonediol an Alkyl Catechol from Bonellia macrocarpa

    Get PDF
    The purpose of this study was to investigate antiproliferative activity of bonediol, an alkyl catechol isolated from the Mayan medicinal plant Bonellia macrocarpa. Bonediol was assessed for growth inhibition of androgen-sensitive (LNCaP), androgen-insensitive (PC-3), and metastatic androgen-insensitive (PC-3M) human prostate tumor cells; toxicity on normal cell line (HEK 293) was also evaluated. Hedgehog pathway was evaluated and competitive 3H-estradiol ligand binding assay was performed. Additionally, antioxidant activity on Nrf2-ARE pathway was evaluated. Bonediol induced a growth inhibition on prostate cancer cell lines (IC50 from 8.5 to 20.6 µM). Interestingly, bonediol binds to both estrogen receptors (ERα (2.5 µM) and ERβ (2.1 µM)) and displaces the native ligand E2 (17β-estradiol). No significant activity was found in the Hedgehog pathway. Additionally, activity of bonediol on Nrf2-ARE pathway suggested that bonediol could induce oxidative stress and activation of detoxification enzymes at 1 µM (3.8-fold). We propose that the compound bonediol may serve as a potential chemopreventive treatment with therapeutic potential against prostate cancer

    Bonellia albiflora

    No full text
    Few studies have been carried out on the medical flora of Mexico’s Yucatan Peninsula in search for new therapeutic agents, in particular against cancer. In this paper, we evaluated the cytotoxic potential of the extract of Bonellia albiflora, a plant utilized in the traditional Mayan medicine for treatment of chronic injuries of the mouth. We carried out the methanolic extracts of different parts of the plant by means of extraction with the Soxhlet equipment. We conducted liquid-liquid fractions on each extract with solvents of increasing polarity. All extracts and fractions were evaluated for cytotoxic activity versus four human cancer cell lines and one normal cell line through a tetrazolium dye reduction (MTT) assay in 96-well cell culture plates. The methanolic root-bark extract possessed much greater cytotoxic activity in the human oropharyngeal cancer cell line (KB); its hexanic fraction concentrated the active metabolites and induced apoptosis with the activation of caspases 3 and 8. The results demonstrate the cytotoxic potential of the B. albiflora hexanic fraction and substantiate the importance of the study of the traditional Mayan medicinal plants

    Isolation and Identification of Cytotoxic Compounds from Aeschynomene fascicularis, a Mayan Medicinal Plant

    No full text
    The plant Aeschynomene fascicularis (Fabaceae) has been used in Mayan traditional medicine in the Yucatan peninsula. However, the compounds present in the plant responsible for its curative properties have not yet been investigated. Aeschynomene fascicularis root bark was extracted with 100% methanol to obtain a crude extract. The methanol extract was partitioned successively with solvents with increasing polarity to obtain the corresponding hexane (Hx), dichloromethane (DCM) and ethyl acetate fractions (EtOAc), as well as a residual water-alcoholic fraction. These fractions were tested for their cytotoxic activities using an MTT assay against Hep-2 cancer cell lines. The Hx fraction led to the isolation of spinochalcone C (1), spinochalcone A (2), isocordoin (3) and secundiflorol G (4). Their structures were identified based on spectroscopic evidence and chemical properties. All compounds were subjected to cytotoxicity and antiproliferative assays against a panel of seven cell lines, including one normal-type cell line. Spinochalcone A (2) exhibited cytotoxic activity against DU-145 cell line and antiproliferative activity against the KB cell line. Secundiflorol G (4) showed strong cytotoxic activity towards KB and Hep-2 cell lines. In addition, isocordoin (3) showed moderate activity on KB, Hep-2 and DU-145 cell lines. The active Compounds 2, 3 and 4 are potential therapeutic entities against cancer
    corecore