171 research outputs found

    Integrin α11β1 is expressed in breast cancer stroma and associates with aggressive tumor phenotypes

    Get PDF
    Cancer‐associated fibroblasts are essential modifiers of the tumor microenvironment. The collagen‐binding integrin α11β1 has been proposed to be upregulated in a pro‐tumorigenic subtype of cancer‐associated fibroblasts. Here, we analyzed the expression and clinical relevance of integrin α11β1 in a large breast cancer series using a novel antibody against the human integrin α11 chain. Several novel monoclonal antibodies against the integrin α11 subunit were tested for use on formalin‐fixed paraffin‐embedded tissues, and Ab 210F4B6A4 was eventually selected to investigate the immunohistochemical expression in 392 breast cancers using whole sections. mRNA data from METABRIC and co‐expression patterns of integrin α11 in relation to αSMA and cytokeratin‐14 were also investigated. Integrin α11 was expressed to varying degrees in spindle‐shaped cells in the stroma of 99% of invasive breast carcinomas. Integrin α11 co‐localized with αSMA in stromal cells, and with αSMA and cytokeratin‐14 in breast myoepithelium. High stromal integrin α11 expression (66% of cases) was associated with aggressive breast cancer features such as high histologic grade, increased tumor cell proliferation, ER negativity, HER2 positivity, and triple‐negative phenotype, but was not associated with breast cancer specific survival at protein or mRNA levels. In conclusion, high stromal integrin α11 expression was associated with aggressive breast cancer phenotypes.publishedVersio

    Breakpoint Associated with a novel 2.3 Mb deletion in the VCFS region of 22q11 and the role of Alu (SINE) in recurring microdeletions

    Get PDF
    BACKGROUND: Chromosome 22q11.2 region is highly susceptible to rearrangement, specifically deletions that give rise to a variety of genomic disorders including velocardiofacial or DiGeorge syndrome. Individuals with this 22q11 microdeletion syndrome are at a greatly increased risk to develop schizophrenia. METHODS: Genotype analysis was carried out on the DNA from a patient with the 22q11 microdeletion using genetic markers and custom primer sets to define the deletion. Bioinformatic analysis was performed for molecular characterization of the deletion breakpoint sequences in this patient. RESULTS: This 22q11 deletion patient was established to have a novel 2.3 Mb deletion with a proximal breakpoint located between genetic markers RH48663 and RH48348 and a distal breakpoint between markers D22S1138 and SHGC-145314. Molecular characterization of the sequences at the breakpoints revealed a 270 bp shared sequence of the breakpoint regions (SSBR) common to both ends that share >90% sequence similarity to each other and also to short interspersed nuclear elements/Alu elements. CONCLUSION: This Alu sequence like SSBR is commonly in the proximity of all known deletion breakpoints of 22q11 region and also in the low copy repeat regions (LCRs). This sequence may represent a preferred sequence in the breakpoint regions or LCRs for intra-chromosomal homologous recombination mechanisms resulting in common 22q11 deletion

    Dysregulation of DGCR6 and DGCR6L: psychopathological outcomes in chromosome 22q11.2 deletion syndrome

    Get PDF
    Chromosome 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion syndrome in humans. It is typified by highly variable symptoms, which might be explained by epigenetic regulation of genes in the interval. Using computational algorithms, our laboratory previously predicted that DiGeorge critical region 6 (DGCR6), which lies within the deletion interval, is imprinted in humans. Expression and epigenetic regulation of this gene have not, however, been examined in 22q11DS subjects. The purpose of this study was to determine if the expression levels of DGCR6 and its duplicate copy DGCR6L in 22q11DS subjects are associated with the parent-of-origin of the deletion and childhood psychopathologies. Our investigation showed no evidence of parent-of-origin-related differences in expression of both DGCR6 and DGCR6L. However, we found that the variability in DGCR6 expression was significantly greater in 22q11DS children than in age and gender-matched control individuals. Children with 22q11DS who had anxiety disorders had significantly lower DGCR6 expression, especially in subjects with the deletion on the maternal chromosome, despite the lack of imprinting. Our findings indicate that epigenetic mechanisms other than imprinting contribute to the dysregulation of these genes and the associated childhood psychopathologies observed in individuals with 22q11DS. Further studies are now needed to test the usefulness of DGCR6 and DGCR6L expression and alterations in the epigenome at these loci in predicting childhood anxiety and associated adult-onset pathologies in 22q11DS subjects

    Characterization of the past and current duplication activities in the human 22q11.2 region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Segmental duplications (SDs) on 22q11.2 (LCR22), serve as substrates for meiotic non-allelic homologous recombination (NAHR) events resulting in several clinically significant genomic disorders.</p> <p>Results</p> <p>To understand the duplication activity leading to the complicated SD structure of this region, we have applied the A-Bruijn graph algorithm to decompose the 22q11.2 SDs to 523 fundamental duplication sequences, termed subunits. Cross-species syntenic analysis of primate genomes demonstrates that many of these LCR22 subunits emerged very recently, especially those implicated in human genomic disorders. Some subunits have expanded more actively than others, and young <it>Alu </it>SINEs, are associated much more frequently with duplicated sequences that have undergone active expansion, confirming their role in mediating recombination events. Many copy number variations (CNVs) exist on 22q11.2, some flanked by SDs. Interestingly, two chromosome breakpoints for 13 CNVs (mean length 65 kb) are located in paralogous subunits, providing direct evidence that SD subunits could contribute to CNV formation. Sequence analysis of PACs or BACs identified extra CNVs, specifically, 10 insertions and 18 deletions within 22q11.2; four were more than 10 kb in size and most contained young <it>AluY</it>s at their breakpoints.</p> <p>Conclusions</p> <p>Our study indicates that <it>AluY</it>s are implicated in the past and current duplication events, and moreover suggests that DNA rearrangements in 22q11.2 genomic disorders perhaps do not occur randomly but involve both actively expanded duplication subunits and <it>Alu </it>elements.</p

    Severe male infertility after failed ICSI treatment-a phenomenological study of men's experiences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Male-factor infertility underlies approximately 30% of infertility in couples seeking treatment; of which 10% is due to azoospermia. The development of assisted reproductive technology (ART), enabling the use of epididymal or testicular sperm for fertilization of the partner's oocytes, has made biological fatherhood possible for men with obstructive azoospermia. There is limited knowledge of men's experience of their own infertility. The aim of this study was to describe men's experiences of obstructive azoospermia infertility.</p> <p>Methods</p> <p>Eight men with obstructive azoospermia, who had terminated Swedish public health system ART treatment two years previously without subsequent childbirth, were interviewed using a descriptive phenomenological method.</p> <p>Results</p> <p>The essence of the phenomenon is expressed with a metaphor: climbing a mountain step by step with the aim of reaching the top, i.e. having a child and thus a family with a child. Four constituents are included (1) inadequacy followed by a feeling of redress (2) marginalisation, (3) chivalry (4) extension of life and starting a family as driving forces.</p> <p>Conclusions</p> <p>Knowledge of men's experiences of their own infertility is important as a supporting measure to increase the quality of care of infertile couples. By adopting this facet of gender perspective in fertility treatment guidelines, care can hopefully be optimized.</p

    Genes from Chagas Susceptibility Loci That Are Differentially Expressed in T. cruzi-Resistant Mice Are Candidates Accounting for Impaired Immunity

    Get PDF
    Variation between inbred mice of susceptibility to experimental Trypanosoma cruzi infection has frequently been described, but the immunogenetic background is poorly understood. The outcross of the susceptible parental mouse strains C57BL/6 (B6) and DBA/2 (D2), B6D2F1 (F1) mice, is highly resistant to this parasite. In the present study we show by quantitative PCR that the increase of tissue parasitism during the early phase of infection is comparable up to day 11 between susceptible B6 and resistant F1 mice. A reduction of splenic parasite burdens occurs thereafter in both strains but is comparatively retarded in susceptible mice. Splenic microarchitecture is progressively disrupted with loss of follicles and B lymphocytes in B6 mice, but not in F1 mice. By genotyping of additional backcross offspring we corroborate our earlier findings that susceptibility maps to three loci on Chromosomes 5, 13 and 17. Analysis of gene expression of spleen cells from infected B6 and F1 mice with microarrays identifies about 0.3% of transcripts that are differentially expressed. Assuming that differential susceptibility is mediated by altered gene expression, we propose that the following differentially expressed transcripts from these loci are strong candidates for the observed phenotypic variation: H2-Eα, H2-D1, Ng23, Msh5 and Tubb5 from Chromosome 17; and Cxcl11, Bmp2k and Spp1 from Chromosome 5. Our results indicate that innate mechanisms are not of primary relevance to resistance of F1 mice to T. cruzi infection, and that differential susceptibility to experimental infection with this protozoan pathogen is not paralleled by extensive variation of the transcriptome

    How parents choose to use CAM: a systematic review of theoretical models

    Get PDF
    Background: Complementary and Alternative Medicine (CAM) is widely used throughout the UK and the Western world. CAM is commonly used for children and the decision-making process to use CAM is affected by numerous factors. Most research on CAM use lacks a theoretical framework and is largely based on bivariate statistics. The aim of this review was to identify a conceptual model which could be used to explain the decision-making process in parental choice of CAM. Methods: A systematic search of the literature was carried out. A two-stage selection process with predetermined inclusion/exclusion criteria identified studies using a theoretical framework depicting the interaction of psychological factors involved in the CAM decision process. Papers were critically appraised and findings summarised. Results: Twenty two studies using a theoretical model to predict CAM use were included in the final review; only one examined child use. Seven different models were identified. The most commonly used and successful model was Andersen's Sociobehavioural Model (SBM). Two papers proposed modifications to the SBM for CAM use. Six qualitative studies developed their own model. Conclusion: The SBM modified for CAM use, which incorporates both psychological and pragmatic determinants, was identified as the best conceptual model of CAM use. This model provides a valuable framework for future research, and could be used to explain child CAM use. An understanding of the decision making process is crucial in promoting shared decision making between healthcare practitioners and parents and could inform service delivery, guidance and policy

    Spinal deformities rehabilitation - state of the art review

    Get PDF

    Medical conditions in autism spectrum disorders

    Get PDF
    Autism spectrum disorder (ASD) is a behaviourally defined syndrome where the etiology and pathophysiology is only partially understood. In a small proportion of children with the condition, a specific medical disorder is identified, but the causal significance in many instances is unclear. Currently, the medical conditions that are best established as probable causes of ASD include Fragile X syndrome, Tuberous Sclerosis and abnormalities of chromosome 15 involving the 15q11-13 region. Various other single gene mutations, genetic syndromes, chromosomal abnormalities and rare de novo copy number variants have been reported as being possibly implicated in etiology, as have several ante and post natal exposures and complications. However, in most instances the evidence base for an association with ASD is very limited and largely derives from case reports or findings from small, highly selected and uncontrolled case series. Not only therefore, is there uncertainty over whether the condition is associated, but the potential basis for the association is very poorly understood. In some cases the medical condition may be a consequence of autism or simply represent an associated feature deriving from an underlying shared etiology. Nevertheless, it is clear that in a growing proportion of individuals potentially causal medical conditions are being identified and clarification of their role in etio-pathogenesis is necessary. Indeed, investigations into the causal mechanisms underlying the association between conditions such as tuberous sclerosis, Fragile X and chromosome 15 abnormalities are beginning to cast light on the molecular and neurobiological pathways involved in the pathophysiology of ASD. It is evident therefore, that much can be learnt from the study of probably causal medical disorders as they represent simpler and more tractable model systems in which to investigate causal mechanisms. Recent advances in genetics, molecular and systems biology and neuroscience now mean that there are unparalleled opportunities to test causal hypotheses and gain fundamental insights into the nature of autism and its development
    corecore