5 research outputs found

    The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland

    Full text link
    In situ carbonation of basaltic rocks could provide a long-term carbon storage solution, which is essential for the success and public acceptance of carbon storage. To demonstrate the viability of this carbon storage solution, 175 tonnes (t) of pure CO2 and 73 tonnes (t) of a 75% CO2-24% H2S-1% H2-gas mixture were sequentially injected into basaltic rocks at the CarbFix site at Hellisheidi, SW-Iceland from January to August 2012. This paper reports the chemistry and saturation states with respect to potential secondary minerals of sub-surface fluids sampled prior to, during, and after the injections. All gases were dissolved in water during their injection into permeable basalts located at 500–800 m depth with temperatures ranging from 20 to 50 °C. A pH decrease and dissolved inorganic carbon (DIC) increase was observed in the first monitoring well, HN-04, about two weeks after each injection began. At storage reservoir target depth, this diverted monitoring well is located ∼125 m downstream from the injection well. A significant increase in H2S concentration, however, was not observed after the second injection. Sampled fluids from the HN-04 well show a rapid increase in Ca, Mg, and Fe concentration during the injections with a gradual decline in the following months. Calculations indicate that the sampled fluids are saturated with respect to siderite about four weeks after the injections began, and these fluids attained calcite saturation about three months after each injection. Pyrite is supersaturated prior to and during the mixed gas injection and in the following months. In July 2013, the HN-04 fluid sampling pump broke down due to calcite precipitation, verifying the carbonation of the injected CO2. Mass balance calculations, based on the recovery of non-reactive tracers co-injected into the subsurface together with the acid-gases, confirm that more than 95% of the CO2 injected into the subsurface was mineralised within a year, and essentially all of the injected H2S was mineralised within four months of its injection. These results demonstrate the viability of the in situ mineralisation of these gases in basaltic rocks as a long-term and safe storage solution for CO2 and H2S

    The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland

    No full text
    In situ carbonation of basaltic rocks could provide a long-term carbon storage solution, which is essential for the success and public acceptance of carbon storage. To demonstrate the viability of this carbon storage solution, 175 tonnes (t) of pure CO2 and 73 tonnes (t) of a 75% CO2-24% H2S-1% H2-gas mixture were sequentially injected into basaltic rocks at the CarbFix site at Hellisheidi, SW-Iceland from January to August 2012. This paper reports the chemistry and saturation states with respect to potential secondary minerals of sub-surface fluids sampled prior to, during, and after the injections. All gases were dissolved in water during their injection into permeable basalts located at 500–800 m depth with temperatures ranging from 20 to 50 °C. A pH decrease and dissolved inorganic carbon (DIC) increase was observed in the first monitoring well, HN-04, about two weeks after each injection began. At storage reservoir target depth, this diverted monitoring well is located ∼125 m downstream from the injection well. A significant increase in H2S concentration, however, was not observed after the second injection. Sampled fluids from the HN-04 well show a rapid increase in Ca, Mg, and Fe concentration during the injections with a gradual decline in the following months. Calculations indicate that the sampled fluids are saturated with respect to siderite about four weeks after the injections began, and these fluids attained calcite saturation about three months after each injection. Pyrite is supersaturated prior to and during the mixed gas injection and in the following months. In July 2013, the HN-04 fluid sampling pump broke down due to calcite precipitation, verifying the carbonation of the injected CO2. Mass balance calculations, based on the recovery of non-reactive tracers co-injected into the subsurface together with the acid-gases, confirm that more than 95% of the CO2 injected into the subsurface was mineralised within a year, and essentially all of the injected H2S was mineralised within four months of its injection. These results demonstrate the viability of the in situ mineralisation of these gases in basaltic rocks as a long-term and safe storage solution for CO2 and H2S

    Using stable Mg isotope signatures to assess the fate of magnesium during the in situ mineralisation of CO<sub>2</sub> and H2<sub>S</sub> at the CarbFix site in SW-Iceland

    Get PDF
    The in-situ carbonation of basaltic rocks could provide a long-term carbon storage solution. To investigate the viability of this carbon storage solution, 175 tonnes of pure CO2 and 73 tonnes of a 75% CO2-24% H2S-1% H2-gas mixture were sequentially injected into basaltic rocks as a dissolved aqueous fluid at the CarbFix site at Hellisheidi, SW-Iceland. This paper reports the Mg stable isotope compositions of sub-surface fluids sampled prior to, during, and after the CO2 injections. These Mg isotopic compositions are used to trace the fate of this element during the subsurface carbonation of basalts. The measured Mg isotopic compositions of the monitoring well fluids are isotopically lighter than the dissolving basalts and continue to become increasingly lighter for at least two years after the gas-charged water injection was stopped. The results indicate that the formation of isotopically heavy Mg-clays rather than Mg-carbonates are the predominant Mg secondary phases precipitating from the sampled fluids. Isotope mass balance calculations suggest that more than 70% of the Mg liberated from the basalt by the injected gas charged water was precipitated as Mg-clays, with this percentage increasing with time after the injection, consistent with the continued precipitation of Mg clays over the whole of the study period. The formation of Mg clays in response to the injection of CO2 into basalts, as indicated in this study, could be detrimental to carbon storage efforts because the formation of these minerals consume divalent Mg that could otherwise be used for the formation of carbonate minerals and because such clays could decrease host rock permeability
    corecore