121 research outputs found

    Superfunctional materials by ultra-severe plastic deformation

    Full text link
    Superfunctional materials are defined as materials with specific properties being superior to the normal functions of engineering materials. Numerous studies introduced severe plastic deformation (SPD) as an effective process to improve the functional and mechanical properties of various metallic and non-metallic materials. Moreover, the concept of ultra-SPD - introducing shear strains over 1,000 to reduce the thickness of sheared phases to levels comparable to atomic distances - was recently utilized to synthesize novel superfunctional materials. In this article, after a brief review of the recent advances in the SPD field, the application of ultra-SPD for controlling atomic diffusion and phase transformation and achieving superfunctional properties is discussed. The main properties achieved by ultra-SPD include (i) high-temperature thermal stability in new immiscible age-hardenable aluminum alloys, (ii) room-temperature superplasticity for the first time in magnesium and aluminum alloys, (iii) high strength and high plasticity in nanograined intermetallics, (iv) low elastic modulus and high hardness in biocompatible binary and high-entropy alloys, (v) superconductivity and high strength in the Nb-Ti alloys, (vi) room-temperature hydrogen storage for the first time in magnesium alloys, and (vii) superior photocatalytic hydrogen production, oxygen production, and carbon dioxide conversion on high-entropy oxides and oxynitrides as a new family of photocatalysts

    Superfunctional high-entropy alloys and ceramics by severe plastic deformation

    Full text link
    High-entropy alloys and ceramics containing at least five principal elements have received high attention in recent years for various mechanical and functional applications. The application of severe plastic deformation (SPD), particularly the high-pressure torsion (HPT) method combined with the CALPHAD and first-principles calculations, resulted in the development of numerous superfunctional high-entropy materials with superior properties compared to the normal functions of engineering materials. This article reviews the recent advances in the application of SPD to achieving superfunctional high-entropy materials. These superfunctional properties include (i) ultrahigh hardness levels in high-entropy alloys which are comparable to ceramics, (ii) high yield strength and good hydrogen embrittlement resistance in high-entropy alloys; (iii) high strength, low elastic modulus, and high biocompatibility in high-entropy alloys, (iv) fast and reversible hydrogen storage in high-entropy alloys and corresponding hydrides, (v) photovoltaic performance and photocurrent generation on high-entropy semiconductors, (vi) photocatalytic oxygen and hydrogen production on high-entropy oxides and oxynitrides from water splitting, and (vii) CO2 photoreduction on high-entropy ceramics. These findings introduce SPD as not only a processing tool to improve the properties of existing high-entropy materials but also as a synthesis tool to synthesize novel high-entropy materials with superior properties compared with conventional engineering materials

    Microstructures and Mechanical Properties of Pure V and Mo Processed by High-Pressure Torsion

    Get PDF
    Two body centered cubic (bcc) metals, V and Mo, were processed by high pressure torsion (HPT) at ambient temperature. Hardness variation as well as microstructural evolution was examined with strain under a pressure of 2 to 6 GPa. It was shown that the hardness increases with straining and saturates to a constant level with the grain size of 330–400 nm in V irrespective of the applied pressures. Although the hardness variation with strain is the same for Mo with the grain size of ∼350 nm at the saturation level when the applied pressure is 6 GPa, the hardness level lowers below the saturation level and the grain size becomes coarser as the pressure is lowered. Tensile tests show that the strength significantly increases with some ductility for V after processing under any pressure and for Mo under lower pressures, but brittle fracture occurs in the Mo specimen processed at 6 GPa. The slower evolution of microstructure as well as the lower hardness levels observed in Mo is due to the applied pressure which is lower than the yield stress and thus due to the insufficient generation of dislocations for grain refinement

    Understanding the role of Ca segregation on thermal stability, electrical resistivity and mechanical strength of nanostructured aluminum

    Full text link
    Achieving a combination of high mechanical strength and high electrical conductivity in low-weight Al alloys requires a full understanding of the relationships between nanoscaled features and physical properties. Grain boundary strengthening through grain size reduction offers some interesting possibilities but is limited by thermal stability issues. Zener pinning by stable nanoscaled particles or grain boundary segregation are well-known strategies for stabilizing grain boundaries. In this study, the Al-Ca system has been selected to investigate the way segregation affects the combination of mechanical strength and electrical resistivity. For this purpose, an Al-Ca composite material was severely deformed by high-pressure torsion to achieve a nanoscaled structure with a mean grain size of only 25 nm. X-ray diffraction, transmission electron microscopy and atom probe tomography data revealed that the fcc Ca phase was dissolved for large levels of plastic deformation leading mainly to Ca segregations along crystalline defects. The resulting microhardness of about 300 HV is much higher than predictions based on Hall and Petch Law and is attributed to limited grain boundary mediated plasticity due to Ca segregation. The electrical resistivity is also much higher than that expected for nanostructured Al. The main contribution comes from Ca segregations that lead to a fraction of electrons reflected or trapped by grain boundaries twice larger than in pure Al. The two-phase state was investigated by in-situ and ex-situ microscopy after annealing at 200{\textdegree}C for 30 min, where precipitation of nanoscaled Al4Ca particles occurred and the mean grain size reached 35 nm. Annealing also significantly decreased electrical resistivity, but it remained much higher than that of nanostructured pure Al, due to Al/Al4Ca interfaces that reflect or trap more than 85% of electrons

    Active photocatalysts for CO2 conversion by severe plastic deformation (SPD)

    Full text link
    Excessive CO2 emission from fossil fuel usage has resulted in global warming and environmental crises. To solve this problem, photocatalytic conversion of CO2 to CO or useful components is a new strategy that has received significant attention. The main challenge in this regard is exploring photocatalysts with high activity for CO2 photoreduction. Severe plastic deformation (SPD) through the high-pressure torsion (HPT) process has been effectively used in recent years to develop novel active catalysts for CO2 conversion. These active photocatalysts have been designed based on four main strategies (i) oxygen vacancy and strain engineering, (ii) stabilization of high-pressure phases, (iii) synthesis of defective high-entropy oxides, and (iv) synthesis of low-bandgap high-entropy oxynitrides. These strategies can enhance the photocatalytic efficiency compared to conventional and benchmark photocatalysts by improving CO2 adsorption, increasing light absorbance, aligning the band structure, narrowing the bandgap, accelerating the charge carrier migration, suppressing the recombination rate of electrons and holes, and providing active sites for photocatalytic reactions. This article reviews recent progress in the application of SPD to develop functional ceramics for photocatalytic CO2 conversion

    Contactless measurement of electrical conductivity for bulk nanostructured silver prepared by high-pressure torsion: A study of the dissipation process of giant strain

    Get PDF
    We measured the electrical conductivity of bulk nanostructured silver prepared by high-pressure torsion (HPT) in a contactless manner by observing the AC magnetic susceptibility resulting from the eddy current, so that we could quantitatively analyze the dissipation process of the residual strain with sufficient time resolution as a function of temperature T and initial shear strain γ. The HPT process was performed at room temperature under a pressure of 6 GPa for revolutions N = 0–5, and we targeted a wide range of residual shear strains. The contactless measurement without electrode preparation enabled us to investigate both the fast and slow dissipation processes of the residual strain with sufficient time resolution, so that a systematic study of these processes became possible. The changes in the electrical conductivity as a function of N at room temperature were indeed consistent with changes in the Vickers microhardness; furthermore, they were also related to changes in structural parameters such as the preferred orientation, the interplanar distance, and the crystallite size. The dissipation process at N = 1, corresponding to γ ≈ 30, was the largest and the fastest. For N = 5, corresponding to γ ≈ 140, we considered the effects of grain boundaries, as well as those of dislocations. The strain dissipation was quite slow below T = 290 K. According to the analytical results, it became successful to conduct the quantitative evaluation of the strain dissipation at arbitrary temperatures: For instance, the relaxation times at T = 280 and 260 K were estimated to be 3.6 and 37 days, respectively

    Critical Temperature in Bulk Ultrafine-Grained Superconductors of Nb, V, and Ta Processed by High-Pressure Torsion

    Get PDF
    This overview describes the progressive results of the superconducting critical temperature in bulk nanostructured metals (niobium, vanadium and tantalum) processed by high-pressure torsion (HPT). Bulk nanostructured superconductors provide a new route to control superconducting property, because ultrafine-grain structures with a high density of grain boundaries, dislocations, and other crystalline defects modify the superconducting order parameter. The critical temperature Tc in Nb increases with the evolution of grain refinement owing to the quantum confinement of electrons in ultrafine grains. In V and Ta, however, Tc decreases at a certain HPT revolution number (i.e. at certain strain levels). The different behaviour of Tc in the three materials is explained by the competition effect between the quantum size effect and disorder effect; these effects are characterized by the parameters of grain size, electron mean free path, and superconducting coherence length

    Impact of TiO2-II phase stabilized in anatase matrix by high-pressure torsion on electrocatalytic hydrogen production

    Get PDF
    Electrocatalysis using renewable energy sources provides a clean technology to produce hydrogen from water. Titanium oxide is considered as a potential electrocatalyst not only for hydrogen production but also for CO2 conversion. In this study, to enhance the cathodic electrocatalytic activity of TiO2, the phase composition on TiO2 surface is modified by inclusion of high-pressure TiO2-II phase using high-pressure torsion (HPT) straining. Detailed spectroscopic studies revealed that the energy band gap is reduced and the valence band energy increased with increasing the TiO2-II fraction. The highest electrocatalytic activity for hydrogen production was achieved on an anatase-rich nanocomposite containing TiO2-II nanograins

    Hydrostatic pressure effects on superconducting transition of nanostructured niobium highly strained by high-pressure torsion

    Get PDF
    We study the effects of hydrostatic pressure (HP) compression on the superconducting transition of severely strained Nb samples, whose grain sizes are reduced to the submicrometer level. Engineered granularity by high-pressure torsion (HPT) treatment changes the strength of coupling between submicrometer-scale grains and introduces lattice strain. We attempt to utilize the initially accumulated shear strain in the starting material for increasing the superconducting transition temperature Tc under HP compression. The HP effects on non-strained Nb have already been investigated in the pressure regime over 100 GPa by Struzhkin et al. [Phys. Rev. Lett. 79, 4262 (1997)], and Tc reportedly exhibited an increase from 9.2 to 9.9 K at approximately 10 GPa. (1) Slightly strained Nb in the HPT treatment exhibits the increase in Tc under HP due to the strengthening of the intergrain coupling, so the pressure scale of the pressure response observed by Struzhkin et al. is reduced to approximately one-seventh at the maximum. (2) Prominently strained Nb in the HPT treatment exhibits the increase in Tc under HP due to a reduction in structural symmetry at the unit-cell level: In a Nb sample subjected to HPT (6 GPa, 10 revolutions), Tc exceeds 9.9 K at approximately 2 GPa. According to our first-principle calculations, the reduction in the structural symmetry affords an increase in the density of states at the Fermi energy, thereby yielding a prominent increase in Tc at low pressures
    • …
    corecore