6,355 research outputs found

    Ultrafast separation of photo-doped carriers in Mott antiferromagnets

    Full text link
    We use inhomogeneous nonequilibrium dynamical mean-field theory to investigate the spreading of photo-excited carriers in Mott insulating heterostructures with strong internal fields. Antiferromagnetic correlations are found to affect the carrier dynamics in a crucial manner: An antiferromagnetic spin background can absorb energy from photo-excited carriers on an ultrafast timescale, thus enabling fast transport between different layers and the separation of electron and hole-like carriers, whereas in the paramagnetic state, carriers become localized in strong fields. This interplay between charge and spin degrees of freedom can be exploited to control the functionality of devices based on Mott insulating heterostructures with polar layers, e.g., for photovoltaic applications

    Auxiliary Hamiltonian representation of the nonequilibrium Dyson equation

    Full text link
    The nonequilibrium Dyson (or Kadanoff-Baym) equation, which is an equation of motion with long-range memory kernel for real-time Green functions, underlies many numerical approaches based on the Keldysh formalism. In this paper we map the problem of solving the Dyson equation in real-time onto a noninteracting auxiliary Hamiltonian with additional bath degrees of freedom. The solution of the auxiliary model does not require the evaluation of a memory kernel and can thus be implemented in a very memory efficient way. The mapping is derived for a self-energy which is local in space and is thus directly applicable within nonequilibrium dynamical mean-field theory (DMFT). We apply the method to study the interaction quench in the Hubbard model for an optical lattice with a narrow confinement, using inhomogeneous DMFT in combination with second-order weak-coupling perturbation theory. We find that, although the quench excites pronounced density oscillations, signatures of the two-stage relaxation similar to the homogeneous system can be observed by looking at the time-dependent occupations of natural orbitals.Comment: 14 pages, 11 figure

    Field-induced polaron formation in the Holstein-Hubbard model

    Get PDF
    We study the effect of strong DC and pulsed electric fields on a Mott insulating system with coupling to optical phonons. A DC field of the order of the gap induces a metallic state characterized by polaronic features in the gap region and a partially inverted population. In this quasi-steady state, the field-induced doublon-hole production is balanced by a phonon-enhanced doublon-hole recombination. The photo-excitation of carriers by a pulsed field leads to similar modifications of the electronic structure in the gap region, and an associated reduction of the doublon life-time. We demonstrate that the field-induced localization of electrons effectively enhances the phonon coupling, an effect which should be measureable with time-resolved photoemission spectroscopy

    Coexistence of excited polarons and metastable delocalized states in photo-induced metals

    Full text link
    We study how polaronic states form as a function of time due to strong electron-phonon coupling, starting from a hot electron distribution which is representative of a photo-induced metallic state immediately after laser excitation. For this purpose we provide the exact solution of the single-electron Holstein model within nonequilibrium dynamical mean-field theory. In particular, this allows us to reveal key features of the transient metallic state in the numerically most challenging regime, the adiabatic regime, in which phonon frequencies are smaller than the electronic bandwidth: Initial coherent phonon oscillations are strongly damped, leaving the system in a mixture of excited polaron states and metastable delocalized states. We compute the time-resolved photoemission spectrum, which allows to disentangle two contributions. The existence of long-lived delocalized states suggest ways to externally control transient properties of photo-doped metals.Comment: 14 pages, 7 figure

    Bypassing the energy-time uncertainty in time-resolved photoemission

    Get PDF
    The energy-time uncertainty is an intrinsic limit for time-resolved experiments imposing a tradeoff between the duration of the light pulses used in experiments and their frequency content. In standard time-resolved photoemission, this limitation maps directly onto a tradeoff between the time resolution of the experiment and the energy resolution that can be achieved on the electronic spectral function. Here we propose a protocol to disentangle the energy and time resolutions in photoemission. We demonstrate that dynamical information on all time scales can be retrieved from time-resolved photoemission experiments using suitably shaped light pulses of quantum or classical nature. As a paradigmatic example, we study the dynamical buildup of the Kondo peak, a narrow feature in the electronic response function arising from the screening of a magnetic impurity by the conduction electrons. After a quench, the electronic screening builds up on timescales shorter than the inverse width of the Kondo peak and we demonstrate that the proposed experimental scheme could be used to measure the intrinsic time scales of such electronic screening. The proposed approach provides an experimental framework to access the nonequilibrium response of collective electronic properties beyond the spectral uncertainty limit and will enable the direct measurement of phenomena such as excited Higgs modes and, possibly, the retarded interactions in superconducting systems.Comment: Extended introduction, added references to section IIB, improved wording in section II

    Stroboscopic prethermalization in weakly interacting periodically driven systems

    Full text link
    Time-periodic driving provides a promising route to engineer non-trivial states in quantum many-body systems. However, while it has been shown that the dynamics of integrable systems can synchronize with the driving into a non-trivial periodic motion, generic non-integrable systems are expected to heat up until they display a trivial infinite-temperature behavior. In this paper we show that a quasi-periodic time evolution over many periods can also emerge in systems with weak integrability breaking, with a clear separation of the timescales for synchronization and the eventual approach of the infinite-temperature state. This behavior is the analogue of prethermalization in quenched systems. The synchronized state can be described using a macroscopic number of approximate constants of motion. We corroborate these findings with numerical simulations for the driven Hubbard model.Comment: 8 pages, 2 figures, published versio
    corecore