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Abstract – We study the effect of strong DC and pulsed electric fields on a Mott insulating
system with coupling to optical phonons. A DC field of the order of the gap induces a metallic
state characterized by polaronic features in the gap region and a partially inverted population.
In this quasi-steady state, the field-induced doublon-hole production is balanced by a phonon-
enhanced doublon-hole recombination. The photo-excitation of carriers by a pulsed field leads to
similar modifications of the electronic structure in the gap region, and an associated reduction of
the doublon life-time. We demonstrate that the field-induced localization of electrons effectively
enhances the phonon coupling, an effect which should be measureable with time-resolved photo-
emission spectroscopy.

Strong electric fields and other external perturbations
can entirely change the properties of correlated electron
materials. If a small DC electric field is applied to a
Mott insulator, it merely induces a polarization, but if
the field exceeds a certain threshold, carriers can tun-
nel across the gap [1–4], which leads to a nonequilibrium
metallic state. For an isolated system, the field-induced
carriers quickly heat up to infinite temperature and the
current vanishes [5–8], but with dissipation, a nonequilib-
rium steady state with a nonthermal energy distribution
may be established. Alternatively, mobile charge carri-
ers can be introduced into a Mott insulator by a laser
pulse whose frequency is tuned to the Mott gap [9–11].
Here an efficient dissipation mechanism may cool photo-
excited hot carriers before they recombine, and thus lead
to a photo-doped metallic state which is different from a
chemically doped metal [12].

In real materials, the lattice acts as a heat bath for the
electrons. In a metal, the energy transfer from the elec-
trons to the lattice is often described by weak-coupling
theory [13], or by the phenomenological two-temperature
model [14], which relies on the assumption that the elec-
tron dynamics is fast compared to the phonons. How-
ever, in strongly interacting systems, this separation of
timescales is in general not possible. For example, the
strongly coupled molecular vibrations in organic Mott in-
sulators have frequencies comparable or even larger than
the electronic bandwidth [15–18], and conversely, the re-
laxation times of charge excitations in Mott insulators

can become much longer than the fast electronic hopping
times [10,17,19,20]. In a theoretical description of a di-
electric breakdown or photo-doping process, it can thus
be important to treat the electronic system and the lat-
tice on equal footing. For a single electron coupled to
the lattice, calculations based on exact diagonalization for
the Holstein model predict intriguing nonlinear transport
phenomena [21], and a relaxation of photo-excited carri-
ers on the timescale of the hopping [22]. In interacting
electron systems, e.g. the half-filled Mott insulator, ex-
act diagonalization [23,24] and density-matrix renormal-
ization group [25] calculations for the Holstein-Hubbard
and Holstein-t-J models have been used to study the re-
laxation dynamics of photo-carriers. For higher excitation
densities, the situation is however unclear.

In this work we consider the Holstein-Hubbard model in
the Mott insulating phase and drive it out of equilibrium
by applying strong electric fields. The model describes
electrons with local interactions and a coupling to disper-
sionless phonons,

H(t) = −
∑

i,δ,σ

vi,i+δ(t)c
†
i+δ,σci,σ +

∑

i

[ω0b
†
ibi + Uni,↑ni,↓]

+
∑

i

[−μ(ni,↑ + ni,↓) + g(ni,↑ + ni,↓ − 1)(b†
i + bi)]. (1)

Here, U is the on-site repulsion, μ the chemical poten-
tial of the electrons with creation operators c†

σ and den-
sity operators nσ, b† the creation operator for Einstein
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Fig. 1: (Colour on-line) Time-evolution of the double occu-
pancy d and current j for different static fields E. The pa-
rameters are U = 5, g = 1 and the inverse temperature of the
initial state is β = 5.

phonons of frequency ω0, and g the electron-phonon cou-
pling strength. In a gauge with pure vector potential
A(t), the electric field E(t) = −∂tA(t) enters via a
time-dependent phase for the hopping terms, vi,j(t) =
v0

i,j exp[i(Ri − Rj)A(t)]. We will consider an infinite-
dimensional hypercubic lattice and apply the field along
the body diagonal [26]. The density of states is ρ(ε) =
exp(−ε2/W 2)/

√
πW , and we measure energy (time) in

units of W (1/W ), i.e. if the bandwidth of the non-
interacting system is 1 eV, the unit of time is about
0.66 fs. Throughout the paper we focus on Mott insulating
systems (U > bandwidth) which are strongly coupled to
optical phonons with frequencies comparable to the band-
width (ω0 = 1). An important parameter to measure the
electron-phonon coupling strength is the phonon-mediated
attractive interaction λ = g2/ω0, in terms of which the
weak-coupling regime corresponds to λ� 1.

An approximate treatment of the Holstein-Hubbard
model is possible within the framework of nonequilibrium
dynamical mean field theory (DMFT) [27–29]. The pre-
cise formalism has been detailed in refs. [29,30]. Electric
fields can be incorporated via the DMFT self-consistency
equations in the same manner as without phonons [28].
To solve the DMFT equations, we use a strong-coupling
impurity solver based on the noncrossing approxima-
tion [29,31]. This solver has been shown to capture
the competition between on-site repulsion and phonon-
mediated attraction [29], and is expected to give qualita-
tively correct results if applied to the Mott phase [31].

Static fields. – We first study the dielectric break-
down in a Mott insulating Holstein-Hubbard model with
U = 5 and g = 1. To reduce transients, we smoothly
switch on the electric field to the value E within a time
tswitch ≈ 8. Figure 1 plots the time-evolution of the dou-
ble occupancy d(t) = 〈n↑(t)n↓(t)〉 and the current j(t) ≡
jσ = 〈 1

L

∑
k ∂kεk+A(t)nkσ(t)〉 for different values of E. At

short times and for weak fields, one observes a steady
increase in d(t), which reflects the field-induced increase
of the carrier density. Because these carriers are cooled
by phonon-scattering, the current j(t) increases roughly
linearly with the number of carriers (i.e. here the phonons
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Fig. 2: (Colour on-line) Top four panels: spectral function
Aret(ω, t = 30) for g = 0.5 (left) and g = 1 (right), plotted for
different values of E (U = 5). The shaded area in the upper
panels indicates the spectrum for E = 0 and the arrows in the
middle left panel show the positions of the phonon sidebands
in the E = 0 spectral function of a model in which the free
bandwidth is reduced by a factor of three. Lower panels: “dis-
tribution function” A</Aret of the quasi-steady state. In black
we show the equilibrium distribution functions for β = 5.

act essentially as a heat bath [5]). For E � 1.5 a dielectric
breakdown occurs, which is marked by a rapid increase in
the current and number of doublons. Despite the strong
field, the nonequilibrium Holstein-Hubbard model quickly
settles into a quasi-steady state characterized by a large
doublon and hole density, and by a large current. In this
state, energy is continuously flowing to the lattice. Since
the dissipation rate is limited, the quasi-steady current
eventually decreases with increasing field [21]. For the
largest currents in fig. 1 about 4 phonons per site are ex-
cited by t = 60. (In a real material, anharmonic effects
will eventually become important, so that the Hubbard-
Holstein description is appropriate only for a sufficiently
short time.)

Further insights into the quasi-steady state can be
obtained from the nonequilibrium spectral functions
Aret,<(ω, t) = ∓ 1

π

∫ ∞
t dt′eiω(t′−t)ImGret,<(t′, t). The top

four panels in fig. 2 plot Aret(ω, t = 30) for g = 0.5 and
g = 1. The spectrum shows an interplay between field-
induced sidebands of the Hubbard bands (Wannier-Stark
peaks), whose positions depend linearly on the field, and
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Fig. 3: (Colour on-line) Left panel: equilibrium spectral func-
tions (upper Hubbard band) for the doped Holstein-Hubbard
model with U = 10, g = 1, β = 5. Right panel: comparison
between the nonequilibrium spectral function of a strongly
photo-doped state (d = 0.11 at t = 60) and a chemically
doped state with a comparable value of d. The equilibrium
spectral function has been shifted to match the position of the
dominant peak.

phonon sidebands, which are spaced by ω0 = 1 and do not
shift with the field. Interestingly, prominent phonon side-
bands appear in the presence of an electric field even in
the weakly coupled system, where the equilibrium density
of states shows no phonon features. The field strength
E � 1 needed to induce well-separated phonon bands is
approximately the same as the field strength which leads
to clearly separated Wannier-Stark peaks in the absence
of electron-phonon coupling. We thus interpret the
observed changes in the spectral function as an effective
enhancement of the electron-phonon coupling due to the
field-induced localization of the electrons, in analogy to
the enhancement of Coulomb interaction effects in the
Wannier-Stark states in metals [32,33]. In fact, the field-
induced phonon sidebands resemble the phonon sidebands
which appear in equilibrium calculations with a reduced
bandwidth (see arrows in the middle left panel of fig. 2).
The main difference is that the sideband below the dom-
inant peak is more prominent in the nonequilibrium case
and that the peaks are shifted to slightly higher energy.

In the strong-coupling regime (g = 1, right panels of
fig. 2) the Hubbard bands are split into phonon side-
bands already in the thermal initial state. Here, one
observes Wannier-Stark sidebands emanating from the
phonon peaks already at weak fields. The Wannier-Stark
bands intersect at fields E ≈ nω0+0.5 (n = 0, 1, . . .), lead-
ing to much sharper phonon sidebands due to field-induced
localization, while the phonon bands broaden around the
resonances E ≈ nω0 (n = 1, 2, . . .). For field strengths
larger than the gap size (E � 1.5) one notices the appear-
ance of states in the gap region. These in-gap states corre-
spond to polarons (doublons or holes dressed by phonons).
They are highly occupied for ω > 0 (dressed doublons)
and depleted for ω < 0 (dressed holes), as apparent from
a partial inversion of the “nonequilibrium distribution
function” A<(ω, t = 30)/Aret(ω, t = 30) in the gap region
(fig. 2, bottom panels).

The field-induced in-gap states are reminiscent of the
sidebands appearing in the equilibrium spectral functions
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Fig. 4: (Colour on-line) Time-resolved photo-emission spec-
trum Aδ(ω, t) for probe-pulse width δ = 4 in a system driven by
a slow Ωpulse = 0.0833 single-cycle pulse with amplitude much
smaller than the gap (U = 12, g = 0.5). The measurements are
taken at the maximum of the first half-cycle (t = tmax = 21.8),
at the node (t = tnode = 31.4) and at the minimum of the
second half-cycle (t = tmin = 41.1). The grey spectra are equi-
librium results for a model with reduced bandwidth W/2 (left)
and W/3 (right).

of doped Mott insulators. To show this, we plot in the left
panel of fig. 3 the upper Hubbard band of electron-doped
systems with U = 10, g = 1, β = 5. As the number of
doublons increases, prominent sidebands (corresponding
to electron-like polarons) appear in the gap region.

Slow (THz) pulse. – The effective enhancement
of the electron-phonon coupling might be observable in
Mott insulators driven by a slow (quasi-DC) field pulse.
To illustrate this, we plot in fig. 4 the time-resolved
photo-emission spectrum [34] Aδ(ω, tp) = −i

∫
dtdt′s(t −

tp)s(t′ − tp)eiω(t−t′)G<(t, t′), measured with a Gaussian
probe pulse envelope s(t) = exp(−t2/δ2). We consider a
large gap insulator with relatively weak phonon coupling
(U = 12, g = 0.5), which is driven by a single-cycle field
pulse with frequency Ωpulse = 0.0833� gap. The low fre-
quency of the pulse prevents photo-doping, while the large
U allows us to apply peak fields comparable to the width
of the Hubbard bands while remaining well below the di-
electric breakdown value. The curves in the figure show
the photo-emission spectrum measured near the maxi-
mum (t = tmax), the minimum (t = tmin), and the node
(t = tnode) of the pump pulse. The width of the probe-
pulse (δ = 4) is chosen such that the field-induced phonon
sidebands can be resolved in frequency, while the spec-
tra measured at t = tmax, tmin and tnode can be clearly
separated in time. Already for a pump pulse amplitude
of 1.5 one can clearly identify the field-induced phonon
sidebands in the spectra measured near the maxima of
the pump pulse, while the spectrum near the node differs
only little from the featureless equilibrium result1. At the
larger field amplitude of 3, the phonon features are even
more prominently visible. In both cases, the pump pulse
produces only a negligible number of doublons, O(10−6),
so that the spectra measured at the first maximum and

1Taking parameters for Cs3C60 (bandwidth of 0.4 eV, lattice
spacing of 15 Å [15]) the peak field strengths used in our calcula-
tions are of O(106)V/cm.
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Fig. 5: (Colour on-line) Top panels: time-resolved spectral
function Aret(ω, t) (left) and A<(ω, t) (right) after a pulse ex-
citation (U = 8, g = 1). Bottom left panel: few-cycle pulse
with Ωpulse ≈ 8. Bottom right panel: doublon decay rate as a
function of d−deq for different pulse amplitudes (photo-doping
concentrations).

the first minimum are almost identical. Again, we find
that the nonequilibrium spectra are qualitatively similar
to equilibrium spectra for a reduced bandwidth (see gray
spectra in fig. 4), which confirms that the main effect is a
field-induced localization of the electrons2.

Photo-doping. – Nonthermal spectral functions with
polaronic mid-gap states also appear after photo-doping.
We first analyze this effect for a Mott insulator with U = 8
and a few-cycle electric field pulse with frequency Ωpulse ≈
8. This pulse excites electrons across the gap and creates
a population in the middle of the upper Hubbard band. In
the absence of electron-phonon coupling the occupied part
of the spectral function relaxes very slowly [20] and there is
little change in the total spectral function. In the Holstein-
Hubbard model, the photo-doping leads to modifications
in the spectral function, which depend strongly on the
concentration of carriers. For g = 1, polaronic in-gap
states appear, which are populated by doublons for ω > 0
and by holes for ω < 0 (fig. 5). The spectral features of
a photo-doped system are almost identical to those of a
chemically doped system with comparable doublon density
(see right panel of fig. 3), which indicates that the cooling
by the phonons is effective and that we can view the photo-
doped state as a “cold” state in the subspace of the Hilbert
space corresponding to a certain number of doublons and
holes.

The formation of polaronic in-gap states has profound
effects both on the relaxation and on the recombination of

2Besides the dominant band-narrowing effect, a quasi-static field
also leads to an enhanced electronic self-energy |ImΣR(t, t)| and a
shift of spectral weight ImΣR(ω, t) to higher energies. Using sum
rules [35], this change can be related to enhanced fluctuations in the
phonon position.
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Fig. 6: (Colour on-line) Time-resolved optical conductivity af-
ter a pulse excitation. Left panel: U = 8, g = 1. Pulse form as
in fig. 5, but with amplitude 8. The doublon number d − deq

for t = 9, 12, 24 is 0.16, 0.15, 0.11 (g = 1) and 0.21,0.22,0.21
(g = 0.5).

photo-excited carriers. In the absence of electron-phonon
coupling, the life-time τ of photo-doped carriers (from
d(t) ∼ exp(−t/τ)) is slow and depends exponentially on
the gap size [20,36]. For large g, the doping-induced in-gap
states lead to a doping-dependent doublon-hole life-time.
If we plot the recombination rate (−d/dt)d as a function
of doublon concentration3 d−deq for different pulse ampli-
tudes (doping concentrations), we find that the rate grows
with the concentration approximately like (d − deq)2, see
bottom right panel of fig. 5. This quadratic dependence
indicates that the rate is determined by the probability
of electron-like polarons meeting hole-like polarons, which
is entirely different from the kinetically blocked, exponen-
tially slow decay in the Hubbard model. (The decay rate
for g = 0 scales linearly with d− deq.)

The formation of a metallic state with polaronic car-
riers after a photo-doping pulse is also evident in the
time-resolved optical conductivity. This is not surprising,
because within DMFT, the optical conductivity σ(ω, t)
(whose definition is given in ref. [37]) is obtained from
the convolution of two time-dependent spectral functions.
Figure 6 shows σ(ω, t) for the pulse-excited system with
U = 8, g = 1 and g = 0.5. The pulse shape is the same as
that shown in fig. 5, but with a smaller amplitude. In the
initial equilibrium state (β = 5), the optical conductiv-
ity has weight around ω = 8, corresponding to transitions
between the Hubbard bands, which for the larger phonon-
coupling are split into phonon sidebands. At t = 6, during
the application of the pulse with frequency Ωpulse ≈ 8, the
conductivity in the low-energy region grows, and we no-
tice some weight also at energy ω ≈ 16 (for simplicity, we
have neglected vertex corrections, which may be relevant
in the presence of an external field). This high-energy fea-
ture may correspond to “Floquet sidebands”, which are
separated from the Hubbard bands by multiples of the
driving frequency Ωpulse [38]. At t = 9 the pulse is over
and this high-energy feature is gone. Instead, a Drude
peak appears at low frequencies. Because of the cooling
effect, the peak in the model with weak phonon coupling

3We use the double occupancy in the initial equilibrium state as
an estimate for deq.
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Fig. 7: (Colour on-line) Time-resolved spectral function Aret

during and shortly after a pulse excitation. The interaction is
U = 12 and the pulse frequency is Ωpulse ≈ 15 (i.e. doublons
are inserted at the upper edge of the Hubbard band).

(g = 0.5) grows and sharpens on a timescale of about
20/W , indicating the formation of a metallic state with
large kinetic energy. In the model with g = 1, the growth
of the Drude peak stops already at t ≈ 9, and its weight is
considerably smaller than in the weakly coupled case4. At
later times ω0-periodic modulations appear in the Drude
peak, which arise from transitions between the partially
filled polaronic sidebands. Since the polaronic features
are clearly visible in the time-resolved optical conductiv-
ity, we expect that the field-induced enhancement of the
electron-phonon coupling, as evidenced for example by the
proposed sub-gap THz pump experiment (fig. 4), can also
be detected in optical conductivity data.

Dissipation. – To illustrate the cooling of the photo-
doped carriers due to electron-phonon scattering we con-
sider a large-gap insulator (U = 12) subject to an intensive
few-cycle pulse with Ωpulse ≈ 15, which creates a popula-
tion at the upper edge of the upper band (a larger value
of U is chosen here to suppress the doublon-hole recom-
bination on the timescale of the plot). Plots of A<(ω, t)
for different values of g are shown in fig. 7. In the ab-
sence of electron-phonon coupling only a small number of
doublons is inserted (due to the small overlap of the upper
Hubbard band with the power spectrum of the pulse), and
these photo-doped carriers remain confined to the upper
edge of the band up to times t 
 10. For g = 0.5, the
spectral weight shifts to lower energies and piles up at the
lower band edge already at t ≈ 8. For weak coupling,
the relaxation (energy dissipation rate) can be estimated
from the drift velocity of the spectral weight from the up-
per band edge to the lower band edge. For even larger
electron-phonon coupling the Hubbard bands broaden due
to pronounced phonon sidebands and the appearance of
in-gap states. In the simulation for g = 1 one observes

4The main reason for this is that the kinetic energy of the polarons
is lower. While the doublon density is lower in the calculation with
g = 1 by a factor of less than two, see caption of fig. 6, this fact
alone cannot explain the differences in the Drude peak.
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Fig. 8: (Colour on-line) Top four panels: occupied spectral
weight A<(t, ω) in the upper Hubbard band of a photo-doped
system with U = 12 and indicated values of g and ω0 (different
arbitrary intensity scales). The parameters in the top two pan-
els correspond to the same g2/ω0. Bottom panels: relaxation
time τ extracted from the kinetic energy plotted as a function
of g2 (right panel) and g2/ω0 (left panel).

a rapid population of these sidebands by the cooled po-
larons. The cooling of photo-induced doublons from an
energy Ω/2 ≈ 7.5 to the lowest phonon-peaks in the up-
per Hubbard band (ω ≈ 4) occurs already during the ap-
plication of the pulse (before t = 4), and the subsequent
relaxation and polaron-formation (appearance of doping-
induced in-gap states) is also a very fast process.

Our numerical simulations show that neither ω0, nor
the coupling strength g individually determine this dis-
sipation strength, but the parameter λ = g2/ω0. The
top two panels of fig. 8 plot A<(ω, t) in two systems with
U = 12, but very different phonon frequencies and phonon
coupling strengths. The parameters, ω0 = 1, g = 0.25
and ω0 = 0.1, g = 0.079 however correspond to the same
g2/ω0. While the density of absorbed doublons is different
in the two simulations, the drift velocity of the spectral
weight is almost identical. In contrast, the model with
ω0 = 0.1, g = 0.25 (ω0 = 1, g = 0.079) shows a much
faster (slower) relaxation (see middle panels). From the
approximately exponential long-time relaxation of the ki-
netic energy we can furthermore extract relaxation times
τ . The bottom right panel plots 1

τ as a function of g2 for
different ω0. While for fixed ω0, 1

τ grows approximately
proportional to g2, it depends strongly on the value of the
phonon frequency. A rough data collapse is obtained if we
plot 1

τ as a function of g2/ω0 (bottom left panel).
Finally, the spectral weight plots in fig. 7, which use the

same intensity scale, suggest that the number of carriers
produced by the high-frequency pulse is enhanced by the
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phonon coupling. We analyzed the g-dependence of the
doping concentration, and compared it with the result ex-
pected for a rigid spectral function which does not respond
to the pulse. If the field-strength is in the linear regime, we
expect a number of doped carriers proportional to the con-
volution Nnaive =

∫
dω′dωAret(ω)p(ω)Aret(ω − ω′)f(ω −

ω′)(1 − f(ω)), where p(ω) is the power spectrum of the
pulse and f(ω) is the Fermi distribution function for β = 5.
While Nnaive increases by a factor 1.7 if g is increased from
0 to 1, due to the broadening of the spectral function, the
number of doped carriers in the linear regime increases by
a factor of about 4.4. For pulse amplitude 20, outside the
linear regime (fig. 7), the corresponding increase is by a
factor 17.

Conclusions. – We have shown that field-induced car-
riers in the Holstein-Hubbard model cool down through
the interaction with phonons and form polaronic states,
which leads to characteristic changes in the time-resolved
photo-emission spectrum. The appearance of dressed
electron- and hole-like carriers also has a significant ef-
fect on the carrier recombination time. Even without
doublon-hole production, electric fields can induce pola-
ronic features because the electron localization in strong
fields reduces the bandwidth and effectively enhances the
parameter λ = g2/ω0 which controls the influence of
the phonons. These effects may be observable in time-
resolved photo-emission measurements or optical conduc-
tivity measurements on organic Mott insulators, such as
Cs3C60. Spectral changes related to the polaronic in-gap
states discussed in this work may in fact have been ob-
served in recent experiments on cuprates [39] and one-
dimensional Mott insulators [18].
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