11 research outputs found

    The minimum-enstrophy principle for decaying 2D turbulence in circular domains

    No full text
    In several numerical and experimental studies [1, 2] on freely evolving or decaying two-dimensional (2D) turbulence on a square bounded domain it is observed that a flow, initially containing no net angular momentum (L), spontaneously acquires angular momentum by flow-wall interaction. From earlier work, by Li and Montgomery [3], it could be conjectured that on a circular domain with a no-slip boundary angular momentum production is absent. Decaying turbulence experiments in stratified fluids conducted a few years later by Maassen et al. [4] provided additional evidence supporting this conjecture. These observations have recently been confirmed by Schneider and Farge [5] for decaying 2D turbulence with substantially higher initial integral scale Reynolds numbers

    Can whisker spot patterns be used to identify individual polar bears?

    No full text
    Studies of population dynamics, movement patterns and animal behavior usually require identification of individuals. We evaluated the reliability of using whisker spot patterns to noninvasively identify individual polar bears Ursus maritimus. We obtained the locations of polar bear whisker spots from photographs taken in western Hudson Bay, tested the independence of spot locations, estimated the complexity of each spot pattern in terms of information and determined whether each whisker spot pattern was reliable from its information content. Of the 50 whisker spot patterns analyzed, 98% contained enough information to be reliable, and this result varied little among observers. Photographs taken \u3c50 m from polar bears were most useful. Our results suggest that individual identification of polar bears in the field based on whisker spot pattern variations is reliable. Researchers studying polar bear behavior or estimating population parameters can benefit from this method if proximity to the bears is feasible. © 2007 The Zoological Society of London

    Shared Decision Making in Cardiac Electrophysiology Procedures and Arrhythmia Management

    Get PDF
    Shared decision making (SDM) has been advocated to improve patient care, patient decision acceptance, patient-provider communication, patient motivation, adherence, and patient reported outcomes. Documentation of SDM is endorsed in several society guidelines and is a condition of reimbursement for selected cardiovascular and cardiac arrhythmia procedures. However, many clinicians argue that SDM already occurs with clinical encounter discussions or the process of obtaining informed consent and note the additional imposed workload of using and documenting decision aids without validated tools or evidence that they improve clinical outcomes. In reality, SDM is a process and can be done without decision tools, although the process may be variable. Also, SDM advocates counter that the low-risk process of SDM need not be held to the high bar of demonstrating clinical benefit and that increasing the quality of decision making should be sufficient. Our review leverages a multidisciplinary group of experts in cardiology, cardiac electrophysiology, epidemiology, and SDM, as well as a patient advocate. Our goal is to examine and assess SDM methodology, tools, and available evidence on outcomes in patients with heart rhythm disorders to help determine the value of SDM, assess its possible impact on electrophysiological procedures and cardiac arrhythmia management, better inform regulatory requirements, and identify gaps in knowledge and future needs

    Protein Mediators of Sterol Transport Across Intestinal Brush Border Membrane

    No full text

    1940–1959

    No full text
    corecore