2,504 research outputs found

    Structural Transparency – A New Wood Plastic Composite Girder

    Get PDF
    Transparency is one of the significant features of modern architecture. By utilisingtransparent materials the feeling of lightness can be conveyed. This paper shows thepossibility of employing transparent plastic as a load-bearing element. In order tobe able to use a new material as part of the building structure it is essential to knowits mechanical behaviour under various conditions like different temperatures,environmental impacts or the load duration. Proposals for the design of structuralelements that consist of these materials are still rare up to now since plastics arestill fairly new to the building industry. By combining transparent withconventional building materials it is possible to merge transparency and strength ina girder that comprises a combination of transparent thermoplastics and wood

    On statistically stationary homogeneous shear turbulence

    Full text link
    A statistically stationary turbulence with a mean shear gradient is realized in a flow driven by suitable body forces. The flow domain is periodic in downstream and spanwise directions and bounded by stress free surfaces in the normal direction. Except for small layers near the surfaces the flow is homogeneous. The fluctuations in turbulent energy are less violent than in the simulations using remeshing, but the anisotropy on small scales as measured by the skewness of derivatives is similar and decays weakly with increasing Reynolds number.Comment: 4 pages, 5 figures (Figs. 3 and 4 as external JPG-Files

    High-temperature liquid-mercury cathodes for ion thrusters Quarterly progress report, 1 Dec. 1966 - 28 Feb. 1967

    Get PDF
    High temperature liquid mercury cathodes for ion thrusters - thermal design analysi

    Truncated-Unity Parquet Equations: Application to the Repulsive Hubbard Model

    Full text link
    The parquet equations are a self-consistent set of equations for the effective two-particle vertex of an interacting many-fermion system. The application of these equations to bulk models is, however, demanding due to the complex emergent momentum and frequency structure of the vertex. Here, we show how a channel-decomposition by means of truncated unities, which was developed in the context of the functional renormalization group to efficiently treat the momentum dependence, can be transferred to the parquet equations. This leads to a significantly reduced numerical effort scaling only linearly with the number of discrete momenta. We apply this technique to the half-filled repulsive Hubbard model on the square lattice and present approximate solutions for the channel-projected vertices and the full reducible vertex.Comment: Consistent with published version in Phys. Rev.

    Symmetry Decomposition of Chaotic Dynamics

    Full text link
    Discrete symmetries of dynamical flows give rise to relations between periodic orbits, reduce the dynamics to a fundamental domain, and lead to factorizations of zeta functions. These factorizations in turn reduce the labor and improve the convergence of cycle expansions for classical and quantum spectra associated with the flow. In this paper the general formalism is developed, with the NN-disk pinball model used as a concrete example and a series of physically interesting cases worked out in detail.Comment: CYCLER Paper 93mar01

    Anomalous power law of quantum reversibility for classically regular dynamics

    Get PDF
    The Loschmidt Echo M(t) (defined as the squared overlap of wave packets evolving with two slightly different Hamiltonians) is a measure of quantum reversibility. We investigate its behavior for classically quasi-integrable systems. A dominant regime emerges where M(t) ~ t^{-alpha} with alpha=3d/2 depending solely on the dimension d of the system. This power law decay is faster than the result ~ t^{-d} for the decay of classical phase space densities

    A Trace Formula for Products of Diagonal Matrix Elements in Chaotic Systems

    Full text link
    We derive a trace formula for ∑nAnnBnn...δ(E−En)\sum_n A_{nn}B_{nn}...\delta(E-E_n), where AnnA_{nn} is the diagonal matrix element of the operator AA in the energy basis of a chaotic system. The result takes the form of a smooth term plus periodic-orbit corrections; each orbit is weighted by the usual Gutzwiller factor times ApBp...A_p B_p ..., where ApA_p is the average of the classical observable AA along the periodic orbit pp. This structure for the orbit corrections was previously proposed by Main and Wunner (chao-dyn/9904040) on the basis of numerical evidence.Comment: 8 pages; analysis made more rigorous in the revised versio

    Semiclassical Quantization by Pade Approximant to Periodic Orbit Sums

    Full text link
    Periodic orbit quantization requires an analytic continuation of non-convergent semiclassical trace formulae. We propose a method for semiclassical quantization based upon the Pade approximant to the periodic orbit sums. The Pade approximant allows the re-summation of the typically exponentially divergent periodic orbit terms. The technique does not depend on the existence of a symbolic dynamics and can be applied to both bound and open systems. Numerical results are presented for two different systems with chaotic and regular classical dynamics, viz. the three-disk scattering system and the circle billiard.Comment: 7 pages, 3 figures, submitted to Europhys. Let
    • …
    corecore