48 research outputs found
RNA Unwinding by the Trf4/Air2/Mtr4 Polyadenylation (TRAMP) Complex
Many RNA-processing events in the cell nucleus involve the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex, which contains the poly(A) polymerase Trf4p, the Zn-knuckle protein Air2p, and the RNA helicase Mtr4p. TRAMP polyadenylates RNAs designated for processing by the nuclear exosome. In addition, TRAMP functions as an exosome cofactor during RNA degradation, and it has been speculated that this role involves disruption of RNA secondary structure. However, it is unknown whether TRAMP displays RNA unwinding activity. It is also not clear how unwinding would be coordinated with polyadenylation and the function of the RNA helicase Mtr4p in modulating poly(A) addition. Here, we show that TRAMP robustly unwinds RNA duplexes. The unwinding activity of Mtr4p is significantly stimulated by Trf4p/Air2p, but the stimulation of Mtr4p does not depend on ongoing polyadenylation. Nonetheless, polyadenylation enables TRAMP to unwind RNA substrates that it otherwise cannot separate. Moreover, TRAMP displays optimal unwinding activity on substrates with a minimal Mtr4p binding site comprised of adenylates. Our results suggest a model for coordination between unwinding and polyadenylation activities by TRAMP that reveals remarkable synergy between helicase and poly(A) polymerase
Degradation of Hypomodified tRNA\u3csub\u3ei\u3c/sub\u3e\u3csup\u3eMet\u3c/sup\u3e in vivo Involves RNA-dependent ATPase Activity of the DExH Helicase Mtr4p
Effective turnover of many incorrectly processed RNAs in yeast, including hypomodified tRNAi Met, requires the TRAMP complex, which appends a short poly(A) tail to RNA designated for decay. The poly(A) tail stimulates degradation by the exosome. The TRAMP complex contains the poly(A) polymerase Trf4p, the RNA-binding protein Air2p, and the DExH RNA helicase Mtr4p. The role of Mtr4p in RNA degradation processes involving the TRAMP complex has been unclear. Here we show through a genetic analysis that MTR4 is required for degradation but not for polyadenylation of hypomodified tRNAi Met. A suppressor of the trm6-504 mutation in the tRNA m1A58 methyltransferase (Trm6p/Trm61p), which causes a reduced level of tRNAi Met, was mapped to MTR4. This mtr4-20 mutation changed a single amino acid in the conserved helicase motif VI of Mtr4p. The mutation stabilizes hypomodified tRNAi Met in vivo but has no effect on TRAMP complex stability or polyadenylation activity in vivo or in vitro. We further show that purified recombinant Mtr4p displays RNA-dependent ATPase activity and unwinds RNA duplexes with a 3′-to-5′ polarity in an ATP-dependent fashion. Unwinding and RNA-stimulated ATPase activities are strongly reduced in the recombinant mutant Mtr4-20p, suggesting that these activities of Mtr4p are critical for degradation of polyadenylated hypomodified tRNAi Met
Analysis of the RNA Binding Specificity Landscape of C5 Protein Reveals Structure and Sequence Preferences that Direct RNase P Specificity.
RNA binding proteins (RBPs) are typically involved in non-equilibrium cellular processes, and specificity can arise from differences in ground state, transition state, or product states of the binding reactions for alternative RNAs. Here, we use high-throughput methods to measure and analyze the RNA association kinetics and equilibrium binding affinity for all possible sequence combinations in the precursor tRNA binding site of C5, the essential protein subunit of Escherichia coli RNase P. The results show that the RNA sequence specificity of C5 arises due to favorable RNA-protein interactions that stabilize the transition state for association and bound enzyme-substrate complex. Specificity is further impacted by unfavorable RNA structure involving the C5 binding site in the ground state. The results illustrate a comprehensive quantitative approach for analysis of RNA binding specificity, and show how both RNA structure and sequence preferences of an essential protein subunit direct the specificity of a ribonucleoprotein enzyme
The RNA Helicase Mtr4p Modulates Polyadenylation in the TRAMP Complex
SummaryMany steps in nuclear RNA processing, surveillance, and degradation require TRAMP, a complex containing the poly(A) polymerase Trf4p, the Zn-knuckle protein Air2p, and the RNA helicase Mtr4p. TRAMP polyadenylates RNAs designated for decay or trimming by the nuclear exosome. It has been unclear how polyadenylation by TRAMP differs from polyadenylation by conventional poly(A) polymerase, which produces poly(A) tails that stabilize RNAs. Using reconstituted S. cerevisiae TRAMP, we show that TRAMP inherently suppresses poly(A) addition after only 3–4 adenosines. This poly(A) tail length restriction is controlled by Mtr4p. The helicase detects the number of 3′-terminal adenosines and, over several adenylation steps, elicits precisely tuned adjustments of ATP affinities and rate constants for adenylation and TRAMP dissociation. Our data establish Mtr4p as a critical regulator of polyadenylation by TRAMP and reveal that an RNA helicase can control the activity of another enzyme in a highly complex fashion and in response to features in RNA
The helicase Ded1p controls use of near-cognate translation initiation codons in 5' UTRs.
The conserved and essential DEAD-box RNA helicase Ded1p from yeast and its mammalian orthologue DDX3 are critical for the initiation of translation1. Mutations in DDX3 are linked to tumorigenesis2-4 and intellectual disability5, and the enzyme is targeted by a range of viruses6. How Ded1p and its orthologues engage RNAs during the initiation of translation is unknown. Here we show, by integrating transcriptome-wide analyses of translation, RNA structure and Ded1p-RNA binding, that the effects of Ded1p on the initiation of translation are connected to near-cognate initiation codons in 5' untranslated regions. Ded1p associates with the translation pre-initiation complex at the mRNA entry channel and repressing the activity of Ded1p leads to the accumulation of RNA structure in 5' untranslated regions, the initiation of translation from near-cognate start codons immediately upstream of these structures and decreased protein synthesis from the corresponding main open reading frames. The data reveal a program for the regulation of translation that links Ded1p, the activation of near-cognate start codons and mRNA structure. This program has a role in meiosis, in which a marked decrease in the levels of Ded1p is accompanied by the activation of the alternative translation initiation sites that are seen when the activity of Ded1p is repressed. Our observations indicate that Ded1p affects translation initiation by controlling the use of near-cognate initiation codons that are proximal to mRNA structure in 5' untranslated regions
Discovery of antivirulence agents against methicillin-resistant staphylococcus aureus
Antivirulence agents inhibit the production of disease-causing virulence factors but are neither bacteriostatic nor bactericidal. Antivirulence agents against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300, the most widespread community-associated MRSA strain in the United States, were discovered by virtual screening against the response regulator AgrA, which acts as a transcription factor for the expression of several of the most prominent S. aureus toxins and virulence factors involved in pathogenesis. Virtual screening was followed by similarity searches in the databases of commercial vendors. The small-molecule compounds discovered inhibit the production of the toxins alpha-hemolysin and phenol-soluble modulin α in a dose-dependent manner without inhibiting bacterial growth. These antivirulence agents are small-molecule biaryl compounds in which the aromatic rings either are fused or are separated by a short linker. One of these compounds is the FDA-approved nonsteroidal anti-inflammatory drug diflunisal. This represents a new use for an old drug. Antivirulence agents might be useful in prophylaxis and as adjuvants in antibiotic therapy for MRSA infections
Remodeling of ribonucleoprotein complexes with DExH/D RNA helicases
The DExH/D protein family is the largest group of enzymes in eukaryotic RNA metabolism. DExH/D proteins are mainly known for their ability to unwind RNA duplexes in an ATP-dependent fashion. However, it has become clear in recent years that these DExH/D RNA helicases are also involved in the ATP-dependent remodeling of RNA–protein complexes. Here we review recent studies that highlight physiological roles of DExH/D proteins in the displacement of proteins from RNA. We further discuss work with simple RNA–protein complexes in vitro, which illuminates mechanisms by which DExH/D proteins remove proteins from RNA. Although we are only beginning to understand how DExH/D proteins remodel RNA–protein complexes, these studies have shown that an ‘RNA helicase’ does not per se require cofactors to displace proteins from RNA, that protein displacement does not necessarily involve RNA duplex unwinding, and that not all DExH/D proteins are able to disassemble the same range of ribonucleoproteins
Dynamic Regulation of Alternative Splicing by Silencers that Modulate 5′ Splice Site Competition
SummaryAlternative splicing makes a major contribution to proteomic diversity in higher eukaryotes with ∼70% of genes encoding two or more isoforms. In most cases, the molecular mechanisms responsible for splice site choice remain poorly understood. Here, we used a randomization-selection approach in vitro to identify sequence elements that could silence a proximal strong 5′ splice site located downstream of a weakened 5′ splice site. We recovered two exonic and four intronic motifs that effectively silenced the proximal 5′ splice site both in vitro and in vivo. Surprisingly, silencing was only observed in the presence of the competing upstream 5′ splice site. Biochemical evidence strongly suggests that the silencing motifs function by altering the U1 snRNP/5′ splice site complex in a manner that impairs commitment to specific splice site pairing. The data indicate that perturbations of non-rate-limiting step(s) in splicing can lead to dramatic shifts in splice site choice
Rna helicases at work: binding and rearranging
RNA helicases are ubiquitous, highly conserved enzymes that participate in nearly all aspects of RNA metabolism. These proteins bind or remodel RNA or RNA-protein complexes in an ATP-dependent fashion. How RNA helicases physically perform their cellular tasks has been a longstanding question, but in recent years, intriguing models have started to link structure, mechanism and biological function for some RNA helicases. This review outlines our current view on major structural and mechanistic themes of RNA helicase function, and on emerging physical models for cellular roles of these enzymes. RNA helicases: ubiquitous and central players in RNA metabolism RNA helicases are highly conserved enzymes that use ATP to bind or remodel RNA or ribonucleoprotein complexes (RNPs