48 research outputs found

    Measuring spirometry in a lung cancer screening cohort highlights possible underdiagnosis and misdiagnosis of Chronic Obstructive Pulmonary Disease

    Get PDF
    Introduction: Chronic Obstructive Pulmonary Disease (COPD) is underdiagnosed, and measurement of spirometry alongside low-dose computed tomography (LDCT) screening for lung cancer is one strategy to increase earlier diagnosis of this disease. // Methods: Ever-smokers at high risk of lung cancer were invited to the Yorkshire Lung Screening Trial for a Lung Health Check (LHC) comprising LDCT screening, pre-bronchodilator spirometry and smoking cessation service. In this cross-sectional study we present data on participant demographics, respiratory symptoms, lung function, emphysema on imaging and both self-reported and primary care diagnoses of COPD. Multivariable logistic regression analysis identified factors associated with possible underdiagnosis and misdiagnosis of COPD in this population, with airflow obstruction (AO) defined as FEV1/FVC ratio <0.70. // Results: Of 3,920 LHC attendees undergoing spirometry, 17% had undiagnosed AO with respiratory symptoms, representing potentially undiagnosed COPD. Compared to those with a primary care COPD code, this population had milder symptoms, better lung function, and were more likely to be current smokers (p≤0.001 for all comparisons). Of 836 attendees with a primary care COPD code who underwent spirometry, 19% did not have AO, potentially representing misdiagnosed COPD, although symptom burden was high. // Discussion: Spirometry offered alongside LDCT screening can potentially identify cases of undiagnosed and misdiagnosed COPD. Future research should assess the downstream impact of these findings to determine if any meaningful changes to treatment and outcomes occurs, and also to assess the impact on co-delivering spirometry on other parameters of LDCT screening performance such as participation and adherence. Additionally, work is needed to better understand the aetiology of respiratory symptoms in those with misdiagnosed COPD, to ensure this highly symptomatic group receive evidence-based interventions

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Winners and Losers: Gerrymandering and the Wisconsin Supreme Court Case

    No full text
    Includes Figures, Maps, Appendices and Bibliography.The objective of this research is to examine the validity of the gerrymandering claims being levied against the current Wisconsin State Assembly map in the Gill v Whitford Supreme Court case. To test these claims we examined the first elections following the 1991, 2001, and 2011 decennial assembly redistricting. More specifically, we compared the 1992 and 2002 elections with the controversial 2012 election. Utilizing the efficiency gap, a metric that measures gerrymandering through calculating the so-called “wasted vote,” we observed the level of gerrymandering in each year to determine whether 2012 stood out as an anomaly. Furthermore, we also tested the counterargument that partisan migration, as measured by district level changes in vote share, is the root cause of Wisconsin’s electoral upheaval. In our analysis we found that Wisconsin’s 2012 assembly election did in fact have an efficiency gap calculation substantially higher than previous elections, indicating gerrymandering was likely in play. Furthermore, we found that partisan migration could not be sufficiently correlated with changes in the efficiency gap, therefore negating the partisan migration theory

    Data from: Tracing the footprints of a moving hybrid zone under a demographic history of speciation with gene flow

    No full text
    A lack of optimal gene combinations, as well as low levels of genetic diversity are often associated with the formation of species range margins. Conservation efforts rely on predictive modelling using abiotic variables and assessments of genetic diversity to determine target species and populations for controlled breeding, germplasm conservation and assisted migration. Biotic factors such as interspecific competition and hybridization, however, are largely ignored, despite their prevalence across diverse taxa and their role as key evolutionary forces. Hybridization between species with well developed barriers to reproductive isolation often results in the production of offspring with lower fitness. Generation of novel allelic combinations through hybridization, however, can also generate positive fitness consequences. Despite this possibility, hybridization-mediated introgression is often considered a threat to biodiversity because it can blur species boundaries. The contribution of hybridization towards increasing genetic diversity of populations at range margins has only recently gathered attention in conservation studies. We assessed the extent to which hybridization contributes towards range dynamics by tracking spatio-temporal changes in the central location of a hybrid zone between two recently diverged species of pines: Pinus strobiformis and P. flexilis. By comparing geographic cline centre estimates for global admixture coefficient with morphological traits associated with reproductive output we demonstrate a northward shift in the hybrid zone. Using a combination of spatially explicit, individual-based simulations and linkage disequilibrium variance partitioning we note a significant contribution of adaptive introgression towards this northward movement, despite the potential for differences in regional population size to aid hybrid zone movement. Overall, our study demonstrates that hybridization between recently diverged species can increase genetic diversity and generate novel allelic combinations. These novel combinations may allow range margin populations to track favourable climatic conditions or facilitate adaptive evolution to on-going and future climate change
    corecore