189 research outputs found

    Persistent current induced by magnetic impurities

    Get PDF
    We calculate the average persistent current in a normal conducting, mesoscopic ring in the diffusive regime. In the presence of magnetic impurities, a contribution to the persistent current is identified, which is related to fluctuations in the electron spin density. Assuming a spin-flip scattering rate which is comparable to the Thouless energy E_c and low temperature, this new contribution to the persistent current is of the order I∼Ec2/(kTϕ0)I\sim E_c^2/(kT\phi_0), which is considerably larger than the persistent current induced by the electron-electron interaction.Comment: 19 pages, 7 figures, accepted by Z. Phys.

    Comment on "Magnetic response of Disordered Metallic Rings: Large Contributions of Far Levels"

    Get PDF
    Comment on cond-mat/0205390; PRL 90, 026805 (2003

    Persistent Currents versus Phase Breaking in Mesoscopic Metallic Samples

    Get PDF
    Persistent currents in mesoscopic normal metal rings represent, even a decade after their first experimental observation, a challenge to both, theorists and experimentalists. After giving a brief review of the existing -- experimental and theoretical -- results, we concentrate on the (proposed) relationship of the size of the persistent current to the phase breaking rate. In particular, we consider effects induced by noise, scattering at two-level systems, and magnetic impurities.Comment: accepted by JLT

    Quantum Coherence in an Exactly Solvable One-dimensional Model with Defects

    Get PDF
    Using the Quantum Inverse Scattering Method we construct an integrable Heisenberg-XXZ-model, or equivalently a model for spinless fermions with nearest-neighbour interaction, with defects. Each defect involves three sites with a fine tuning between nearest-neighbour and next-nearest-neighbour terms. We investigate the finite size corrections to the ground state energy and its dependence on an external flux as a function of a parameter ν\nu, characterizing the strength of the defects. For intermediate values of ν\nu, both quantities become very small, although the ground state wavefunction remains extended.Comment: accepted by Europhys. Lett., latex, 7 pages. A postscript version including the figures is available at: http://www.physik.uni-augsburg.de/theo2/Publications

    Density functional theory for a model quantum dot: Beyond the local-density approximation

    Get PDF
    We study both static and transport properties of model quantum dots, employing density functional theory as well as (numerically) exact methods. For the lattice model under consideration the accuracy of the local-density approximation generally is poor. For weak interaction, however, accurate results are achieved within the optimized effective potential method, while for intermediate interaction strengths a method combining the exact diagonalization of small clusters with density functional theory is very successful. Results obtained from the latter approach yield very good agreement with density matrix renormalization group studies, where the full Hamiltonian consisting of the dot and the attached leads has to be diagonalized. Furthermore we address the question whether static density functional theory is able to predict the exact linear conductance through the dot correctly - with, in general, negative answer.Comment: 8 page

    Electronic transport properties of (fluorinated) metal phthalocyanine

    Get PDF
    The magnetic and transport properties of the metal phthalocyanine (MPc) and F16_{16}MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S-Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16_{16}MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.Comment: 8 pages (two-column), 8 figure

    Quantum spin chains with various defects

    Get PDF

    From VO2 to V2O3: The Metal-Insulator Transition of the Magneli Phase V6O11

    Get PDF
    The metal-insulator transition (MIT) of V6O11 is studied by means of electronic structure calculations using the augmented spherical wave method. The calculations are based on density functional theory and the local density approximation. Changes of the electronic structure at the MIT are discussed in relation to the structural transformations occuring simultaneously. The analysis is based on a unified point of view of the crystal structures of V6O11, VO2, and V2O3. This allows to group the electronic bands into states behaving similar to the dioxide or the sesquioxide. While the sesquioxide-like V 3d_yz states show rather weak changes on entering the low-temperature structure, some of the dioxide-like V 3d_x^2-y^2 states display splittings and shifts similar to those known from VO2. The MIT of V6O11 arises as a combination of changes appearing in both of these compounds. Our results shed new light onto the role of particular electronic states for the MIT of V2O3.Comment: 7 pages, 6 figures, accepted by Europhys. Let

    Flux Dependence of Persistent Current in a Mesoscopic Disordered Tight Binding Ring

    Full text link
    We reconsider the study of persistent currents in a disordered one-dimensional ring threaded by a magnetic flux, using he one-band tight-binding model for a ring of N-sites with random site energies. The secular equation for the eigenenergies expressed in terms of transfer matrices in the site representation is solved exactly to second order in a perturbation theory for weak disorder and fluxes differing from half-integer multiples of the elementary flux quantum. From the equilibrium currents associated with the one-electron eigenstates we derive closed analytic expressions for the disorder averaged persistent current for even and odd numbers, Ne, of electrons in the ground state. Explicit discussion for the half-filled band case confirms that the persistent current is flux periodic as in the absence of disorder, and that its amplitude is generally suppressed by the effect of the disorder. In comparison to previous results, based on an approximate analysis of the secular equation, the current suppression by disorder is strongly enhanced by a new flux-dependent factor.Comment: 15 pages, LaTex 2

    Diamagnetic orbital response of mesoscopic silver rings

    Full text link
    We report measurements of the flux-dependent orbital magnetic susceptibility of an ensemble of 10^5 disconnected silver rings at 217 MHz. Because of the strong spin-orbit scattering rate in silver this experiment is a test of existing theories on orbital magnetism. Below 100 mK the rings exhibit a magnetic signal with a flux periodicity of h/2 e consistent with averaged persistent currents, whose amplitude is estimated to be of the order of 0.3 nA. The sign of the oscillations indicates diamagnetism in the vicinity of zero magnetic field. This sign is not consistent with theoretical predictions for average persistent currents unless considering attractive interactions in silver. We propose an alternative interpretation taking into account spin orbit scattering and finite frequency.Comment: 4 pages, 4 figures, revtex4, accepted for publication in Physical Review Letter
    • …
    corecore