605 research outputs found

    A Model for the Genesis of Arterial Pressure Mayer Waves from Heart Rate and Sympathetic Activity

    Get PDF
    Both theoretic models and cross-spectral analyses suggest that an oscillating sympathetic nervous outflow generates the low frequency arterial pressure fluctuations termed Mayer waves. Fluctuations in heart rate also have been suggested to relate closely to Mayer waves, but empiric models have not assessed the joint causative influences of hemt rate and sympathetic activity. Therefore, we constructed a model based simply upon the hemodynamic equation deriving from Ohm's Law. With this model, we determined time relations and relative contributions of heart rate and sympathetic activity to the genesis of arterial pressure Mayer waves. We assessed data from eight healthy young volunteers in the basal state and in a high sympathetic state known to produce concurrent increases in sympathetic nervous outflow and Mayer wave amplitude. We fit the Mayer waves (0.05-0.20 Hz) in mean arterial pressure by the weighted sum ofleading oscillations in heart rate and sympathetic nerve activity. This model of our data showed heart rate oscillations leading by 2-3.75 seconds were responsible for almost half of the variance in arterial pressure (basal R^2=0.435Ā±0.140, high sympathetic R^2=0.438Ā±0.180). Surprisingly, sympathetic activity (lead 0-5 seconds) contributed only modestly to the explained variance in Mayer waves during either sympathetic state (basal: āˆ†R^2=0.046Ā±0.026; heightened: āˆ†R^2=0.085Ā±0.036). Thus, it appears that heart rate oscillations contribute to Mayer waves in a simple linear fashion, whereas sympathetic fluctuations contribute little to Mayer waves in this way. Although these results do not exclude an important vascular sympathetic role, they do suggest that additional Ji1ctors, such as sympathetic transduction into vascular resistance, modulate its influence.Binda and Fred Shuman Foundation; National Institute on Aging (AG14376)

    A Model for the Genesis of Arterial Pressure Mayer Waves from Heart Rate and Sympathetic Activity

    Full text link
    Both theoretic models and cross-spectral analyses suggest that an oscillating sympathetic nervous outflow generates the low frequency arterial pressure fluctuations termed Mayer waves. Fluctuations in heart rate also have been suggested to relate closely to Mayer waves, but empiric models have not assessed the joint causative influences of hemt rate and sympathetic activity. Therefore, we constructed a model based simply upon the hemodynamic equation deriving from Ohm's Law. With this model, we determined time relations and relative contributions of heart rate and sympathetic activity to the genesis of arterial pressure Mayer waves. We assessed data from eight healthy young volunteers in the basal state and in a high sympathetic state known to produce concurrent increases in sympathetic nervous outflow and Mayer wave amplitude. We fit the Mayer waves (0.05-0.20 Hz) in mean arterial pressure by the weighted sum ofleading oscillations in heart rate and sympathetic nerve activity. This model of our data showed heart rate oscillations leading by 2-3.75 seconds were responsible for almost half of the variance in arterial pressure (basal R^2=0.435Ā±0.140, high sympathetic R^2=0.438Ā±0.180). Surprisingly, sympathetic activity (lead 0-5 seconds) contributed only modestly to the explained variance in Mayer waves during either sympathetic state (basal: āˆ†R^2=0.046Ā±0.026; heightened: āˆ†R^2=0.085Ā±0.036). Thus, it appears that heart rate oscillations contribute to Mayer waves in a simple linear fashion, whereas sympathetic fluctuations contribute little to Mayer waves in this way. Although these results do not exclude an important vascular sympathetic role, they do suggest that additional Ji1ctors, such as sympathetic transduction into vascular resistance, modulate its influence.Binda and Fred Shuman Foundation; National Institute on Aging (AG14376)

    Tunable electronic anisotropy in single-crystal A2Cr3As3 (A = K, Rb) quasi-one-dimensional superconductors

    Full text link
    Single crystals of A2Cr3As3 (A = K, Rb) were successfully grown using a self-flux method and studied via structural, transport and thermodynamic measurement techniques. The superconducting state properties between the two species are similar, with critical temperatures of 6.1 K and 4.8 K in K2Cr3As3 and Rb2Cr3As3, respectively. However, the emergence of a strong normal state electronic anisotropy in Rb2Cr3As3 suggests a unique electronic tuning parameter is coupled to the inter-chain spacing in the A2Cr3As3 structure, which increases with alkali metal ionic size while the one-dimensional [(Cr3As3)^{2-}]_{\infty} chain structure itself remains essentially unchanged. Together with dramatic enhancements in both conductivity and magnetoresistance (MR), the appearance of a strong anisotropy in the MR of Rb2Cr3As3 is consistent with the proposed quasi-one-dimensional character of band structure and its evolution with alkali metal species in this new family of superconductors.Comment: 6 pages, 8 figures; to appear in Phys. Rev.

    Intrinsic Insulating Ground State in Transition Metal Dichalcogenide TiSe2

    Full text link
    The transition metal dichalcogenide TiSe2_2 has received significant research attention over the past four decades. Different studies have presented ways to suppress the 200~K charge density wave transition, vary low temperature resistivity by several orders of magnitude, and stabilize magnetism or superconductivity. Here we give the results of a new synthesis technique whereby samples were grown in a high pressure environment with up to 180~bar of argon gas. Above 100~K, properties are nearly unchanged from previous reports, but a hysteretic resistance region that begins around 80~K, accompanied by insulating low temperature behavior, is distinct from anything previously observed. An accompanying decrease in carrier concentration is seen in Hall effect measurements, and photoemission data show a removal of an electron pocket from the Fermi surface in an insulating sample. We conclude that high inert gas pressure synthesis accesses an underlying nonmetallic ground state in a material long speculated to be an excitonic insulator.Comment: 11 pages, 7 figure

    CoAs: The line of 3d demarcation

    Get PDF
    Transition metal-pnictide compounds have received attention for their tendency to combine magnetism and unconventional superconductivity. Binary CoAs lies on the border of paramagnetism and the more complex behavior seen in isostructural CrAs, MnP, FeAs, and FeP. Here we report the properties of CoAs single crystals grown with two distinct techniques along with density functional theory calculations of its electronic structure and magnetic ground state. While all indications are that CoAs is paramagnetic, both experiment and theory suggest proximity to a ferromagnetic instability. Quantum oscillations are seen in torque measurements up to 31.5~T, and support the calculated paramagnetic Fermiology.Comment: 10 pages, 6 figure

    CoAs: The Line of 3d Demarcation

    Get PDF
    Transition metal-pnictide compounds have received attention for their tendency to combine magnetism and unconventional superconductivity. Binary CoAs lies on the border of paramagnetism and the more complex behavior seen in isostructural CrAs, MnP, FeAs, and FeP. Here we report the properties of CoAs single crystals grown with two distinct techniques along with density functional theory calculations of its electronic structure and magnetic ground state. While all indications are that CoAs is paramagnetic, both experiment and theory suggest proximity to a ferromagnetic instability. Quantum oscillations are seen in torque measurements up to 31.5 T and support the calculated paramagnetic Fermiology

    Extreme magnetic field-boosted superconductivity

    Full text link
    Applied magnetic fields underlie exotic quantum states, such as the fractional quantum Hall effect and Bose-Einstein condensation of spin excitations. Superconductivity, on the other hand, is inherently antagonistic towards magnetic fields. Only in rare cases can these effects be mitigated over limited fields, leading to reentrant superconductivity. Here, we report the unprecedented coexistence of multiple high-field reentrant superconducting phases in the spin-triplet superconductor UTe2. Strikingly, we observe superconductivity in the highest magnetic field range identified for any reentrant superconductor, beyond 65 T. These extreme properties reflect a new kind of exotic superconductivity rooted in magnetic fluctuations and boosted by a quantum dimensional crossover

    Single crystal investigation of proposed type-II Weyl semimetal CeAlGe

    Get PDF
    We present details of materials synthesis, crystal structure, and anisotropic magnetic properties of single crystals of CeAlGe, a proposed type-II Weyl semimetal. Single-crystal x-ray diffraction confirms that CeAlGe forms in noncentrosymmetric I41_1md space group, in line with predictions of non-trivial topology. Magnetization, specific heat and electrical transport measurements were used to confirm antiferromagnetic order below 5 K, with an estimated magnon excitation gap of Ī”\Delta = 9.11 K from heat capacity and hole-like carrier density of 1.44 Ɨ\times 1020^{20} cmāˆ’3^{-3} from Hall effect measurements. The easy magnetic axis is along the [100] crystallographic direction, indicating that the moment lies in the tetragonal ab\it{ab}-plane below 7 K. A spin-flop transition to less than 1 Ī¼B\mu_B/Ce is observed to occur below 30 kOe at 1.8 K in the M(H)M(H) (Hāˆ„a\bf{H}\|\bf{a}) data. Small magnetic fields of 3 kOe and 30 kOe are sufficient to suppress magnetic order when applied along the a\it{a}- and c\it{c}-axes, respectively, resulting in a complex Tāˆ’H\it{T-H} phase diagram for Hāˆ„a\bf{H}\|\bf{a} and a simpler one for Hāˆ„c\bf{H}\|\bf{c}

    Evolution of Structure and Superconductivity in Ba(Niā‚ā‚‹ā‚“Coā‚“)ā‚‚Asā‚‚

    Get PDF
    The effects of Co substitution on Ba(Ni1-xCox)2As2 (0 ā‰¤ x ā‰¤ 0.251) single crystals grown out of Pb flux are investigated via transport, magnetic, and thermodynamic measurements. BaNi2As2 exhibits a first-order tetragonal to triclinic structural phase transition at Ts = 137 K upon cooling, and enters a superconducting phase below Tc = 0.7 K. The structural phase transition is sensitive to cobalt content and is suppressed completely by x ā‰„ 0.133. The superconducting critical temperature, Tc, increases continuously with x, reaching a maximum of Tc = 2.3 K at x = 0.083 and then decreases monotonically until superconductivity is no longer observable well into the tetragonal phase. In contrast to similar BaNi2As2 substitutional studies, which show an abrupt change in Tc at the triclinic-tetragonal boundary that extends far into the tetragonal phase, Ba(Ni1-xCox)2As2 exhibits a domelike phase diagram centered around the zero-temperature tetragonal-triclinic boundary. Together with an anomalously large heat capacity jump Ī”Ce/Ī³T āˆ¼ 2.2 near optimal doping, the smooth evolution of Tc in the Ba(Ni1-xCox)2As2 system suggests a mechanism for pairing enhancement other than phonon softening
    • ā€¦
    corecore