47 research outputs found

    Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The liver X receptors (LXRs) are oxysterol sensing nuclear receptors with multiple effects on metabolism and immune cells. However, the complete genome-wide cistrome of LXR in cells of human origin has not yet been provided.</p> <p>Results</p> <p>We performed ChIP-seq in phorbol myristate acetate-differentiated THP-1 cells (macrophage-type) after stimulation with the potent synthetic LXR ligand T0901317 (T09). Microarray gene expression analysis was performed in the same cellular model. We identified 1357 genome-wide LXR locations (FDR < 1%), of which 526 were observed after T09 treatment. <it>De novo </it>analysis of LXR binding sequences identified a DR4-type element as the major motif. On mRNA level T09 up-regulated 1258 genes and repressed 455 genes. Our results show that LXR actions are focused on 112 genomic regions that contain up to 11 T09 target genes per region under the control of highly stringent LXR binding sites with individual constellations for each region. We could confirm that LXR controls lipid metabolism and transport and observed a strong association with apoptosis-related functions.</p> <p>Conclusions</p> <p>This first report on genome-wide binding of LXR in a human cell line provides new insights into the transcriptional network of LXR and its target genes with their link to physiological processes, such as apoptosis.</p> <p>The gene expression microarray and sequence data have been submitted collectively to the NCBI Gene Expression Omnibus <url>http://www.ncbi.nlm.nih.gov/geo</url> under accession number GSE28319.</p

    Impaired LXRa phosphorylation attenuates progression of fatty liver disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a very common indication for liver transplantation. How fat-rich diets promote progression from fatty liver to more damaging inflammatory and fibrotic stages is poorly understood. Here, we show that disrupting phosphorylation at Ser196 (S196A) in the liver X receptor alpha (LXRĪ±, NR1H3) retards NAFLD progression in mice on a high-fat-high-cholesterol diet. Mechanistically, this is explained by key histone acetylation (H3K27) and transcriptional changes in pro-fibrotic and pro-inflammatory genes. Furthermore, S196A-LXRĪ± expression reveals the regulation of novel diet-specific LXRĪ±-responsive genes, including the induction of Ces1f, implicated in the breakdown of hepatic lipids. This involves induced H3K27 acetylation and altered LXR and TBLR1 cofactor occupancy at the Ces1f gene in S196A fatty livers. Overall, impaired Ser196-LXRĪ± phosphorylation acts as a novel nutritional molecular sensor that profoundly alters the hepatic H3K27 acetylome and transcriptome during NAFLD progression placing LXRĪ± phosphorylation as an alternative anti-inflammatory or anti-fibrotic therapeutic target

    Knockdown of SF-1 and RNF31 Affects Components of Steroidogenesis, TGFĪ², and Wnt/Ī²-catenin Signaling in Adrenocortical Carcinoma Cells

    Get PDF
    The orphan nuclear receptor Steroidogenic Factor-1 (SF-1, NR5A1) is a critical regulator of development and homeostasis of the adrenal cortex and gonads. We recently showed that a complex containing E3 ubiquitin ligase RNF31 and the known SF-1 corepressor DAX-1 (NR0B1) interacts with SF-1 on target promoters and represses transcription of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) genes. To further evaluate the role of SF-1 in the adrenal cortex and the involvement of RNF31 in SF-1-dependent pathways, we performed genome-wide gene-expression analysis of adrenocortical NCI-H295R cells where SF-1 or RNF31 had been knocked down using RNA interference. We find RNF31 to be deeply connected to cholesterol metabolism and steroid hormone synthesis, strengthening its role as an SF-1 coregulator. We also find intriguing evidence of negative crosstalk between SF-1 and both transforming growth factor (TGF) Ī² and Wnt/Ī²-catenin signaling. This crosstalk could be of importance for adrenogonadal development, maintenance of adrenocortical progenitor cells and the development of adrenocortical carcinoma. Finally, the SF-1 gene profile can be used to distinguish malignant from benign adrenocortical tumors, a finding that implicates SF-1 in the development of malignant adrenocortical carcinoma

    The small heterodimer partner interacts with the liver X receptor alpha and represses its transcriptional activity

    No full text
    The small heterodimer partner SHP (NR0B2) is an unusual nuclear receptor that lacks the typical DNA binding domain common to most nuclear receptors. SHP has been reported to act as a corepressor for several nuclear receptors, but its exact mechanism of action is still elusive. Here we show that SHP can interact with the liver X receptors LXRalpha (NR1H3) and LXRbeta (NR1H2), as demonstrated by glutathione-S-transferase pull-down assays, mammalian two-hybrid, and coimmunoprecipitation experiments. In transfection assays, SHP inhibits the expression of an artificial reporter driven by an LXR-response element and represses the transcriptional activation by LXR of the human ATP-binding cassette transporter 1 (ABCA1) promoter. Treatment of Caco-2 cells with bile acids, which activate farnesoid X receptor and subsequently induce SHP, leads to the repression of the human ABCG1 gene, an established LXR target gene. These results demonstrate that SHP is able to interact with LXR and to modulate its transcriptional activity
    corecore