2,352 research outputs found

    Tunneling control and localization for Bose-Einstein condensates in a frequency modulated optical lattice

    Full text link
    The similarity between matter waves in periodic potential and solid-state physics processes has triggered the interest in quantum simulation using Bose-Fermi ultracold gases in optical lattices. The present work evidences the similarity between electrons moving under the application of oscillating electromagnetic fields and matter waves experiencing an optical lattice modulated by a frequency difference, equivalent to a spatially shaken periodic potential. We demonstrate that the tunneling properties of a Bose-Einstein condensate in shaken periodic potentials can be precisely controlled. We take additional crucial steps towards future applications of this method by proving that the strong shaking of the optical lattice preserves the coherence of the matter wavefunction and that the shaking parameters can be changed adiabatically, even in the presence of interactions. We induce reversibly the quantum phase transition to the Mott insulator in a driven periodic potential.Comment: Laser Physics (in press

    New Results from NA49

    Get PDF
    We present recent results of the SPS experiment NA49 on production of strange particles and event-by-event fluctuations of mean ptp_t and of charged particle ratios in central Pb+Pb collisions at various beam energies (40, 80, 158 AGeV) as well as in different collisions at 158 AGeV, going from p+p over light-ion collisions to peripheral and central Pb+Pb.Comment: 5 pages, 6 figures (in eps) talk given at XXXI International Symposium on Multiparticle Dynamics, Sep. 1-7, 2001, Datong China URL http://ismd31.ccnu.edu.cn

    Molekulare Signalwege der aseptischen Endoprothesenlockerung (Molecular pathways in aseptic loosening of orthopaedic endoprosthesis)

    Full text link
    Abstract Operative joint replacement to treat disabling joint conditions secondary to degenerative and inflammatory arthritides has become one of the most efficacious and cost-effective procedures to relieve pain and restore joint function. However, prosthetic implants are not built to last forever and osteolysis and aseptic loosening has been associated with prosthetic arthroplasties since their introduction. The functional life of a synthetic joint is influenced by many factors including the material of the implant, operation procedures and the surgeon involved, as well as patient-related factors. Although promising developments have been achieved in this field, more than 10% of all implants still have to undergo operative revision within 15 years after the initial operation. Failure due to sepsis, fractures and dislocations has become rare; premature loosening of implants on the other hand is becoming much more important. Prosthetic loosening without concurrent infection or trauma is called aseptic loosening. It is generally accepted that small particles ("wear debris") and activated macrophages play a key role in aseptic loosening. The pathophysiology of this condition, however, is still not very well characterized. In this article, we review the molecular mechanisms and signal pathways that were unravelled as responsible factors for loosening orthopaedic implants. Finally, we discuss possible novel strategies for future therapeutic approaches

    Quantifying and Controlling Prethermal Nonergodicity in Interacting Floquet Matter

    Get PDF
    The use of periodic driving for synthesizing many-body quantum states depends crucially on the existence of a prethermal regime, which exhibits drive-tunable properties while forestalling the effects of heating. This dependence motivates the search for direct experimental probes of the underlying localized nonergodic nature of the wave function in this metastable regime. We report experiments on a many-body Floquet system consisting of atoms in an optical lattice subjected to ultrastrong sign-changing amplitude modulation. Using a double-quench protocol, we measure an inverse participation ratio quantifying the degree of prethermal localization as a function of tunable drive parameters and interactions. We obtain a complete prethermal map of the drive-dependent properties of Floquet matter spanning four square decades of parameter space. Following the full time evolution, we observe sequential formation of two prethermal plateaux, interaction-driven ergodicity, and strongly frequency-dependent dynamics of long-time thermalization. The quantitative characterization of the prethermal Floquet matter realized in these experiments, along with the demonstration of control of its properties by variation of drive parameters and interactions, opens a new frontier for probing far-from-equilibrium quantum statistical mechanics and new possibilities for dynamical quantum engineering

    Evaluation of subcutaneous implantable cardioverter-defibrillator performance in patients with ion channelopathies from the EFFORTLESS cohort and comparison with a meta-analysis of transvenous ICD outcomes

    Get PDF
    Background: The subcutaneous implantable cardioverter-defibrillator (S-ICD) is an alternative to conventional transvenous ICD (TV-ICD) therapy to reduce lead complications. Objective: To evaluate outcomes in channelopathy vs patients with structural heart disease in the EFFORTLESS-SICD Registry and with a previously reported TV-ICD meta-analysis in channnelopathies. Methods: The EFFORTLESS registry includes 199 patients with channelopathies (Brugada syndrome 83, long QT syndrome 24, idiopathic ventricular fibrillation 78, others 14) and 786 patients with structural heart disease. Results: Channelopathy patients were younger (39 ± 14 years vs 51 ± 17 years; P 200 beats per minute (P = .0002). Annualized appropriate shock, IAS, and complication rates appear to be lower for the S-ICD vs meta-analysis TV-ICD patients, particularly lead complications. Conclusion: EFFORTLESS demonstrates similar S-ICD efficacy and a nonsignificant, lower rate of IAS in channelopathy patients as compared to structural heart disease. Comparable IAS rates were achieved with the device programmed to higher rates for channelopathy patients

    Interaction-dependent photon-assisted tunneling in optical lattices: a quantum simulator of strongly-correlated electrons and dynamical gauge fields

    Get PDF
    We introduce a scheme that combines photon-assisted tunneling by a moving optical lattice with strong Hubbard interactions, and allows for the quantum simulation of paradigmatic quantum many-body models. We show that, in a certain regime, this quantum simulator yields an effective Hubbard Hamiltonian with tunable bond-charge interactions, a model studied in the context of strongly-correlated electrons. In a different regime, we show how to exploit a correlated destruction of tunneling to explore Nagaoka ferromagnetism at finite Hubbard repulsion. By changing the photon-assisted tunneling parameters, we can also obtain a t-J model with independently controllable tunneling t, super-exchange interaction J, and even a Heisenberg-Ising anisotropy. Hence, the full phase diagram of this paradigmatic model becomes accessible to cold-atom experiments, departing from the region t _ J allowed by standard single-band Hubbard Hamiltonians in the strong-repulsion limit. We finally show that, by generalizing the photon-assisted tunneling scheme, the quantum simulator yields models of dynamical Gauge fields, where atoms of a given electronic state dress the tunneling of the atoms with a different internal state, leading to Peierls phases that mimic a dynamical magnetic field

    Higher maximum temperature increases the frequency of water drinking in Mountain Gorillas (Gorilla beringei beringei)

    Get PDF
    Water plays a vital role in many aspects of sustaining life, including thermoregulation. Given that increasing temperatures and more extreme weather events due to climate change are predicted to influence water availability, understanding how species obtain and use water is critical. This is especially true for endangered species in small isolated populations which are vulnerable to drought and the risk of extinction. We examined the relationship between the frequency of water drinking and maximum temperature and rainfall in 21 groups of wild gorillas from the two mountain gorilla populations (Bwindi and Virunga), between 2010 and 2020. In both populations, we found that the frequency of water drinking significantly increased at higher maximum temperatures than cooler ones, but we found no consistent relationship between water drinking and rainfall. We also found that Virunga gorillas relied more on foods with higher water content than Bwindi gorillas, which in part likely explains why they drink water much less frequently. These findings highlight that even in rainforest mammals that gain most of their water requirements from food, access to free-standing water may be important because it likely facilitates evaporative cooling in response to thermoregulatory stress. These results have important implications for conservation and behavior of mountain gorillas in the face of continued increases in temperature and frequency of extreme weather events associated with climate change
    • …
    corecore