3,632 research outputs found
Investigation of the jet-wake flow of a highly loaded centrifugal compressor impeller
Investigations, aimed at developing a better understanding of the complex flow field in high performance centrifugal compressors were performed. Newly developed measuring techniques for unsteady static and total pressures as well as flow directions, and a digital data analysis system for fluctuating signals were thoroughly tested. The loss-affected mixing process of the distorted impeller discharge flow was investigated in detail, in the absolute and relative system, at impeller tip speeds up to 380 m/s. A theoretical analysis proved good coincidence of the test results with the DEAN-SENOO theory, which was extended to compressible flows
A sub-basin scale dust plume source frequency inventory for southern Africa, 2005-2008
We present a dust plume source inventory for southern Africa. In order to locate and track the local, short-lived plume events, source and frequency data have been derived from Meteosat Second Generation (MSG) thermal infrared composite data (4âkm data using 8.7, 10.8, and 12.0â”m) and Moderate Resolution Imaging Spectroradiometer (MODIS) visible composite data (0.25âkm data utilizing 0.620 â 0.670â”m, 0.545 â 0.565â”m, and 0.459 â 0.479â”m). Between January 2005 and December 2008, a total of 328 distinct daytime dust plumes more than 10âkm in length were detected. These plumes were attributed to 101 distinct point sources, consisting largely of ephemeral inland lakes, coastal pans as well as dry river valleys in Namibia, Botswana, and South Africa. These data also provided sub-basin scale source observations for large basins such as Etosha and Makgadikgadi Pans
Clinical Correlates of High Cervical Fractional Anisotropy in Acute Cervical Spinal Cord Injury
Objective: Fractional anisotropy (FA) of the high cervical cord (C1-C2), rostral to the injury site, correlates with upper limb function in patients with chronic cervical spinal cord injury (SCI). In acute cervical SCI, this relationship has not been investigated. The objective of this study was to identify functional correlates of FA of the high cervical cord in a series of patients with acute cervical SCI.
Methods: Traumatic cervical SCI patients who underwent presurgical cervical spine diffusion tensor imaging at our institution were reviewed for this study. FA of the whole cord as well as the lateralcorticospinal tracts (CSTs) was calculated on axial images from C1-C2. Upper limb motor (C5-T1) and sensory (C2-T1) function scores were extracted from the admission American Spinal Injury Association (ASIA) examinations. Correlation analysis for FA with ASIA examinations was performed using a Pearson correlation.
Results: Twelve subjects (9 men, 3 women; mean age 54.7 ± 4.0 years) underwent cervical spine diffusion tensor imaging at a mean duration of 3.6 ± 0.9 days postinjury. No patient had cord compression or intramedullary T2-weighted hyperintensities within the C1-C2 segments. FA correlated with upper limb motor score (whole cord: r = 0.59, P = .04; CST: 0.67, P = .01) and the ASIA grade (whole cord: r = 0.61, P = .03; CST: r = 0.71, P = .009). No correlation was found between FA and sensory scores.
Conclusions: FA of the whole cervical cord as well as the CST, rostral to the injury site, is associated with preserved upper limb motor function as well as superior ASIA grades after acute cervical SCI. FA of the high cervical cord is a potential biomarker of neural injury after acute cervical SCI
Dressed matter waves
We suggest to view ultracold atoms in a time-periodically shifted optical
lattice as a "dressed matter wave", analogous to a dressed atom in an
electromagnetic field. A possible effect lending support to this concept is a
transition of ultracold bosonic atoms from a superfluid to a Mott-insulating
state in response to appropriate "dressing" achieved through time-periodic
lattice modulation. In order to observe this effect in a laboratory experiment,
one has to identify conditions allowing for effectively adiabatic motion of a
many-body Floquet state.Comment: 9 pages, 4 figures, to be published in: J. Phys.: Conference Serie
Diffusion Tensor Imaging Correlates with Short-Term Myelopathy Outcome in Patients with Cervical Spondylotic Myelopathy
Objective To determine if spinal cord diffusion tensor imaging indexes correlate with short-term clinical outcome in patients undergoing elective cervical spine surgery for cervical spondylotic myelopathy (CSM). Methods A prospective consecutive cohort study was performed in patients undergoing elective cervical spine surgery for CSM. After obtaining informed consent, patients with CSM underwent preoperative T2-weighted magnetic resonance imaging and diffusion tensor imaging of the cervical spine. Fractional anisotropy (FA) values at the level of maximum cord compression and at the noncompressed C1-2 level were calculated on axial images. We recorded the modified Japanese Orthopaedic Association (mJOA) scale, Neck Disability Index, and Short Form-36 physical functioning subscale scores for all patients preoperatively and 3 months postoperatively. Statistical analysis was performed to identify correlations between FA and clinical outcome scores. Results The study included 27 patients (mean age 54.5 years ± 1.9, 12 men). The mean postoperative changes in mJOA scale, Neck Disability Index, and Short Form-36 physical functioning subscale scores were 0.9 ± 0.3, â6.0 ± 1.9, and 3.4 ± 1.9. The mean FA at the level of maximum compression was significantly lower than the mean FA at the C1-2 level (0.5 vs. 0.55, P = 0.01). FA was significantly correlated with change in mJOA scale score (Pearson r = â0.42, P = 0.02). FA was significantly correlated with the preoperative mJOA scale score (Pearson r = 0.65, P \u3c 0.001). Conclusions Preoperative FA at the level of maximum cord compression significantly correlates with the 3-month change in mJOA scale score among patients with CSM. FA was also significantly associated with preoperative mJOA scale score and is a potential biomarker for spinal cord dysfunction in CSM
Tunneling control and localization for Bose-Einstein condensates in a frequency modulated optical lattice
The similarity between matter waves in periodic potential and solid-state
physics processes has triggered the interest in quantum simulation using
Bose-Fermi ultracold gases in optical lattices. The present work evidences the
similarity between electrons moving under the application of oscillating
electromagnetic fields and matter waves experiencing an optical lattice
modulated by a frequency difference, equivalent to a spatially shaken periodic
potential. We demonstrate that the tunneling properties of a Bose-Einstein
condensate in shaken periodic potentials can be precisely controlled. We take
additional crucial steps towards future applications of this method by proving
that the strong shaking of the optical lattice preserves the coherence of the
matter wavefunction and that the shaking parameters can be changed
adiabatically, even in the presence of interactions. We induce reversibly the
quantum phase transition to the Mott insulator in a driven periodic potential.Comment: Laser Physics (in press
The dynamism of salt crust patterns on playas
Playas are common in arid environments and can be major sources of mineral dust that can influence global climate. These landforms typically form crusts that limit evaporation and dust emission, modify surface erosivity and erodibility, and can lead to over prediction or under prediction of (1) dust-emission potential and (2) water and heat fluxes in energy balance modeling. Through terrestrial laser scanning measurements of part of the Makgadikgadi Pans of Botswana (a Southern Hemisphere playa that emits significant amounts of dust), we show that over weeks, months, and a year, the shapes of these surfaces change considerably (ridge thrusting of >30 mm/week) and can switch among continuous, ridged, and degraded patterns. Ridged pattern development changes the measured aerodynamic roughness of the surface (as much as 3 mm/week). The dynamic nature of these crusted surfaces must be accounted for in dust entrainment and moisture balance formulae to improve regional and global climate models
Deceptively Simple NMR Spectra of Contiguously 13C-enriched Compounds
Contiguously 13C-enriched compounds are widely used in biosynthetic studies, since they effectively label a bonded pair of carbon atoms, rather than an individual atom. Such compounds are referred to as »bond labeled« compounds. With such substrates, the course of biosynthesis can be followed using 13C-NMR spectroscopy.
When the enriched carbon atoms are chemically but not magnetically equivalent, the 13C-NMR spectra are unusual, and such spectra have been labeled "deceptively simple«. Furthermore, the use of standard NMR experiments such as DEPT (Distortionless Enhancement by Polarization Transfer) is complicated by the presence of homonuclear coupling between 13C nuclei. At natural abundance, the 13C nucleus is magnetically dilute and shows no homonuclear coupling. This paper analyzes the 13C-NMR spectra of a series of molecules derived from fully 13C-enriched acetylene, and explores some of the complications that arise in applying pulse NMR methods
Influence of Additives on the Reversible Oxygen Reduction Reaction/Oxygen Evolution Reaction in the MgÂČâșâContaining Ionic Liquid N âButylâN âMethylpyrrolidinium Bis(Trifluoromethanesulfonyl)imide
The influence of different additives on the oxygen reduction reaction/oxygen evolution reaction (ORR/OER) in magnesiumâcontaining N âbutylâN âmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([BMP][TFSI]) on a glassy carbon electrode was investigated to gain a better understanding of the electrochemical processes in Mgâair batteries. 18âCrownâ6 was used as a complexing agent for Mg ions to hinder the passivation caused by their reaction with ORR products such as superoxide and peroxide anions. Furthermore, borane dimethylamine complex (NBH) was used as a potential waterâremoving agent to inhibit electrode passivation by reacting with trace impurities of water. The electrochemical processes were characterized by differential electrochemical mass spectrometry to monitor the consumed and evolved O2 in the ORR/OER and determine the number of transferred electrons. Crown ether and NBH efficiently masked Mg. A stochiometric excess of crown ether resulted in reduced formation of a passivation layer, whereas at too high concentrations the reversibility of the ORR/OER was diminished
- âŠ