3,613 research outputs found
Quantum simulation of frustrated magnetism in triangular optical lattices
Magnetism plays a key role in modern technology as essential building block
of many devices used in daily life. Rich future prospects connected to
spintronics, next generation storage devices or superconductivity make it a
highly dynamical field of research. Despite those ongoing efforts, the
many-body dynamics of complex magnetism is far from being well understood on a
fundamental level. Especially the study of geometrically frustrated
configurations is challenging both theoretically and experimentally. Here we
present the first realization of a large scale quantum simulator for magnetism
including frustration. We use the motional degrees of freedom of atoms to
comprehensively simulate a magnetic system in a triangular lattice. Via a
specific modulation of the optical lattice, we can tune the couplings in
different directions independently, even from ferromagnetic to
antiferromagnetic. A major advantage of our approach is that standard
Bose-Einstein-condensate temperatures are sufficient to observe magnetic
phenomena like N\'eel order and spin frustration. We are able to study a very
rich phase diagram and even to observe spontaneous symmetry breaking caused by
frustration. In addition, the quantum states realized in our spin simulator are
yet unobserved superfluid phases with non-trivial long-range order and
staggered circulating plaquette currents, which break time reversal symmetry.
These findings open the route towards highly debated phases like spin-liquids
and the study of the dynamics of quantum phase transitions.Comment: 5 pages, 4 figure
Dressed matter waves
We suggest to view ultracold atoms in a time-periodically shifted optical
lattice as a "dressed matter wave", analogous to a dressed atom in an
electromagnetic field. A possible effect lending support to this concept is a
transition of ultracold bosonic atoms from a superfluid to a Mott-insulating
state in response to appropriate "dressing" achieved through time-periodic
lattice modulation. In order to observe this effect in a laboratory experiment,
one has to identify conditions allowing for effectively adiabatic motion of a
many-body Floquet state.Comment: 9 pages, 4 figures, to be published in: J. Phys.: Conference Serie
Tunable gauge potential for neutral and spinless particles in driven lattices
We present a universal method to create a tunable, artificial vector gauge
potential for neutral particles trapped in an optical lattice. The necessary
Peierls phase of the hopping parameters between neighboring lattice sites is
generated by applying a suitable periodic inertial force such that the method
does not rely on any internal structure of the particles. We experimentally
demonstrate the realization of such artificial potentials, which generate
ground state superfluids at arbitrary non-zero quasi-momentum. We furthermore
investigate possible implementations of this scheme to create tuneable magnetic
fluxes, going towards model systems for strong-field physics
Ultracold quantum gases in triangular optical lattices
Over the last years the exciting developments in the field of ultracold atoms
confined in optical lattices have led to numerous theoretical proposals devoted
to the quantum simulation of problems e.g. known from condensed matter physics.
Many of those ideas demand for experimental environments with non-cubic lattice
geometries. In this paper we report on the implementation of a versatile
three-beam lattice allowing for the generation of triangular as well as
hexagonal optical lattices. As an important step the superfluid-Mott insulator
(SF-MI) quantum phase transition has been observed and investigated in detail
in this lattice geometry for the first time. In addition to this we study the
physics of spinor Bose-Einstein condensates (BEC) in the presence of the
triangular optical lattice potential, especially spin changing dynamics across
the SF-MI transition. Our results suggest that below the SF-MI phase
transition, a well-established mean-field model describes the observed data
when renormalizing the spin-dependent interaction. Interestingly this opens new
perspectives for a lattice driven tuning of a spin dynamics resonance occurring
through the interplay of quadratic Zeeman effect and spin-dependent
interaction. We finally discuss further lattice configurations which can be
realized with our setup.Comment: 19 pages, 7 figure
Nonlocal and local models for taxis in cell migration: a rigorous limit procedure
A rigorous limit procedure is presented which links nonlocal models involving adhesion or nonlocal chemotaxis to their local counterparts featuring haptotaxis and classical chemotaxis, respectively. It relies on a novel reformulation of the involved nonlocalities in terms of integral operators applied directly to the gradients of signal-dependent quantities. The proposed approach handles both model types in a unified way and extends the previous mathematical framework to settings that allow for general solution-dependent coefficient functions. The previous forms of nonlocal operators are compared with the new ones introduced in this paper and the advantages of the latter are highlighted by concrete examples. Numerical simulations in 1D provide an illustration of some of the theoretical findings
Ultra-low threshold CW Triply Resonant OPO in the near infrared using Periodically Poled Lithium Niobate
We have operated a CW triply resonant OPO using a PPLN crystal pumped by a
Nd:YAG laser at 1.06 micron and generating signal and idler modes in the 2-2.3
micron range. The OPO was operated stably in single mode operation over large
periods of time with a pump threshold as low as 500 microwatts.Comment: 7 pages, 5 figures, submitted to JEOS
Interaction-dependent photon-assisted tunneling in optical lattices: a quantum simulator of strongly-correlated electrons and dynamical gauge fields
We introduce a scheme that combines photon-assisted tunneling by a moving optical lattice with strong Hubbard interactions, and allows for the quantum simulation of paradigmatic quantum many-body models. We show that, in a certain regime, this quantum simulator yields an effective Hubbard Hamiltonian with tunable bond-charge interactions, a model studied in the context of strongly-correlated electrons. In a different regime, we show how to exploit a correlated destruction of tunneling to explore Nagaoka ferromagnetism at finite Hubbard repulsion. By changing the photon-assisted tunneling parameters, we can also obtain a t-J model with independently controllable tunneling t, super-exchange interaction J, and even a Heisenberg-Ising anisotropy. Hence, the full phase diagram of this paradigmatic model becomes accessible to cold-atom experiments, departing from the region t _ J allowed by standard single-band Hubbard Hamiltonians in the strong-repulsion limit. We finally show that, by generalizing the photon-assisted tunneling scheme, the quantum simulator yields models of dynamical Gauge fields, where atoms of a given electronic state dress the tunneling of the atoms with a different internal state, leading to Peierls phases that mimic a dynamical magnetic field
Spin Polarization and Magneto-Coulomb Oscillations in Ferromagnetic Single Electron Devices
The magneto-Coulomb oscillation, the single electron repopulation induced by
external magnetic field, observed in a ferromagnetic single electron transistor
is further examined in various ferromagnetic single electron devices. In case
of double- and triple-junction devices made of Ni and Co electrodes, the single
electron repopulation always occurs from Ni to Co electrodes with increasing a
magnetic field, irrespective of the configurations of the electrodes. The
period of the magneto-Coulomb oscillation is proportional to the single
electron charging energy. All these features are consistently explained by the
mechanism that the Zeeman effect induces changes of the Fermi energy of the
ferromagnetic metal having a non-zero spin polarizations. Experimentally
determined spin polarizations are negative for both Ni and Co and the magnitude
is larger for Ni than Co as expected from band calculations.Comment: 4 pages, 3 figures, uses jpsj.sty, submitted to J. Phys. Soc. Jp
Quantifying and Controlling Prethermal Nonergodicity in Interacting Floquet Matter
The use of periodic driving for synthesizing many-body quantum states depends crucially on the existence of a prethermal regime, which exhibits drive-tunable properties while forestalling the effects of heating. This dependence motivates the search for direct experimental probes of the underlying localized nonergodic nature of the wave function in this metastable regime. We report experiments on a many-body Floquet system consisting of atoms in an optical lattice subjected to ultrastrong sign-changing amplitude modulation. Using a double-quench protocol, we measure an inverse participation ratio quantifying the degree of prethermal localization as a function of tunable drive parameters and interactions. We obtain a complete prethermal map of the drive-dependent properties of Floquet matter spanning four square decades of parameter space. Following the full time evolution, we observe sequential formation of two prethermal plateaux, interaction-driven ergodicity, and strongly frequency-dependent dynamics of long-time thermalization. The quantitative characterization of the prethermal Floquet matter realized in these experiments, along with the demonstration of control of its properties by variation of drive parameters and interactions, opens a new frontier for probing far-from-equilibrium quantum statistical mechanics and new possibilities for dynamical quantum engineering
Ground-state energy and depletions for a dilute binary Bose gas
When calculating the ground-state energy of a weakly interacting Bose gas
with the help of the customary contact pseudopotential, one meets an artifical
ultraviolet divergence which is caused by the incorrect treatment of the true
interparticle interactions at small distances. We argue that this problem can
be avoided by retaining the actual, momentum-dependent interaction matrix
elements, and use this insight for computing both the ground-state energy and
the depletions of a binary Bose gas mixture. Even when considering the
experimentally relevant case of equal masses of both species, the resulting
expressions are quite involved, and no straightforward generalizations of the
known single-species formulas. On the other hand, we demonstrate in detail how
these latter formulas are recovered from our two-species results in the limit
of vanishing interspecies interaction.Comment: 11 pages, Phys. Rev. A in pres
- …