79 research outputs found

    A 1H NMR comparative study of human adult and fetal hemoglobins

    Get PDF
    AbstractThe affinities of the individual subunits in human adult and fetal hemoglobins to azide ion have been determined from the combined analysis of NMR and optical titration data. Structural and functional non-equivalence of the constituent subunits, i.e. α and β subunits in human adult hemoglobin and α and γ subunits in human fetal hemoglobin, has been confirmed. The function of the α subunits, which are common to both hemoglobins, is essentially identical in these hemoglobins and, in spite of the substitutions of 39 amino acid residues between β and γ subunits, they exhibit similar azide ion affinities. The present study also demonstrates that the NMR spectral comparison between the two proteins provides signal assignments to the individual subunits in intact tetramer

    Lifestyle intervention prior to IVF does not improve embryo utilization rate and cumulative live birth rate in women with obesity:a nested cohort study

    Get PDF
    STUDY QUESTION: Does lifestyle intervention consisting of an energy-restricted diet, enhancement of physical activity and motivational counseling prior to IVF improve embryo utilization rate (EUR) and cumulative live birth rate (CLBR) in women with obesity? SUMMARY ANSWER: A 6-month lifestyle intervention preceding IVF improved neither EUR nor CLBR in women with obesity in the first IVF treatment cycle where at least one oocyte was retrieved. WHAT IS KNOWN ALREADY: A randomized controlled trial (RCT) evaluating the efficacy of a low caloric liquid formula diet (LCD) preceding IVF in women with obesity was unable to demonstrate an effect of LCD on embryo quality and live birth rate: in this study, only one fresh embryo transfer (ET) or, in case of freeze-all strategy, the first transfer with frozen-thawed embryos was reported. We hypothesized that any effect on embryo quality of a lifestyle intervention in women with obesity undergoing IVF treatment is better revealed by EUR and CLBR after transfer of all fresh and frozen-thawed embryos. STUDY DESIGN, SIZE, DURATION: This is a nested cohort study within an RCT, the LIFEstyle study. The original study examined whether a 6-month lifestyle intervention prior to infertility treatment in women with obesity improved live birth rate, compared to prompt infertility treatment within 24 months after randomization. In the original study between 2009 and 2012, 577 (three women withdrew informed consent) women with obesity and infertility were assigned to a lifestyle intervention followed by infertility treatment (n = 289) or to prompt infertility treatment (n = 285). PARTICIPANTS/MATERIALS, SETTING, METHODS: Only participants from the LIFEstyle study who received IVF treatment were eligible for the current analysis. In total, 137 participants (n = 58 in the intervention group and n = 79 in the control group) started the first cycle. In 25 participants, the first cycle was cancelled prior to oocyte retrieval mostly due to poor response. Sixteen participants started a second or third consecutive cycle. The first cycle with successful oocyte retrieval was used for this analysis, resulting in analysis of 51 participants in the intervention group and 72 participants in the control group. Considering differences in embryo scoring methods and ET day strategy between IVF centers, we used EUR as a proxy for embryo quality. EUR was defined as the proportion of inseminated/injected oocytes per cycle that was transferred or cryopreserved as an embryo. Analysis was performed per cycle and per oocyte/embryo. CLBR was defined as the percentage of participants with at least one live birth from the first fresh and subsequent frozen-thawed ET(s). In addition, we calculated the Z-score for singleton neonatal birthweight and compared these outcomes between the two groups. MAIN RESULTS AND THE ROLE OF CHANCE: The overall mean age was 31.6 years and the mean BMI was 35.4 ± 3.2 kg/m(2) in the intervention group, and 34.9 ± 2.9 kg/m(2) in the control group. The weight change at 6 months was in favor of the intervention group (mean difference in kg vs the control group: −3.14, 95% CI: −5.73 to −0.56). The median (Q25; Q75) number of oocytes retrieved was 4.00 (2.00; 8.00) in the intervention group versus 6.00 (4.00; 9.75) in the control group, and was not significantly different, as was the number of oocytes inseminated/injected (4.00 [2.00; 8.00] vs 6.00 [3.00; 8.75]), normal fertilized embryos (2.00 [0.50; 5.00] vs 3.00 [1.00; 5.00]) and the number of cryopreserved embryos (2.00 [1.25; 4.75] vs 2.00 [1.00; 4.00]). The median (Q25; Q75) EUR was 33.3% (12.5%; 60.0%) in the intervention group and 33.3% (16.7%; 50.0%) in the control group in the per cycle analysis (adjusted B: 2.7%, 95% CI: −8.6% to 14.0%). In the per oocyte/embryo analysis, in total, 280 oocytes were injected or inseminated in the intervention group, 113 were utilized (transferred or cryopreserved, EUR = 40.4%); in the control group, EUR was 30.8% (142/461). The lifestyle intervention did not significantly improve EUR (adjusted odds ratio [OR]: 1.36, 95% CI: 0.94–1.98) in the per oocyte/embryo analysis, taking into account the interdependency of the oocytes per participant. CLBR was not significantly different between the intervention group and the control group after adjusting for type of infertility (male factor and unexplained) and smoking (27.5% vs 22.2%, adjusted OR: 1.03, 95% CI: 0.43–2.47). Singleton neonatal birthweight and Z-score were not significantly different between the two groups. LIMITATIONS, REASONS FOR CAUTION: This study is a nested cohort study within an RCT, and no power calculation was performed. The randomization was not stratified for indicated treatment, and although we corrected our analyses for baseline differences, there may be residual confounding. The limited absolute weight loss and the short duration of the lifestyle intervention might be insufficient to affect EUR and CLBR. WIDER IMPLICATIONS OF THE FINDINGS: Our data do not support the hypothesis of a beneficial short-term effect of lifestyle intervention on EUR and CLBR after IVF in women with obesity, although more studies are needed as there may be a potential clinically relevant effect on EUR. STUDY FUNDING/COMPETING INTEREST(S): The study was supported by a grant from ZonMw, the Dutch Organization for Health Research and Development (50-50110-96-518). A.H. has received an unrestricted educational grant from Ferring pharmaceuticals BV, The Netherlands. B.W.J.M. is supported by an NHMRC Investigator grant (GNT1176437). B.W.J.M. reports consultancy for Guerbet, has been a member of the ObsEva advisory board and holds Stock options for ObsEva. B.W.J.M. has received research funding from Guerbet, Ferring and Merck. F.J.M.B. reports personal fees from membership of the external advisory board for Merck Serono and a research support grant from Merck Serono, outside the submitted work. TRIAL REGISTRATION NUMBER: The LIFEstyle RCT was registered at the Dutch trial registry (NTR 1530). https://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1530

    Comparing the cumulative live birth rate of cleavage-stage versus blastocyst-stage embryo transfers between IVF cycles:a study protocol for a multicentre randomised controlled superiority trial (the ToF trial)

    Get PDF
    Introduction In vitro fertilisation (IVF) has evolved as an intervention of choice to help couples with infertility to conceive. In the last decade, a strategy change in the day of embryo transfer has been developed. Many IVF centres choose nowadays to transfer at later stages of embryo development, for example, transferring embryos at blastocyst stage instead of cleavage stage. However, it still is not known which embryo transfer policy in IVF is more efficient in terms of cumulative live birth rate (cLBR), following a fresh and the subsequent frozen-thawed transfers after one oocyte retrieval. Furthermore, studies reporting on obstetric and neonatal outcomes from both transfer policies are limited. Methods and analysis We have set up a multicentre randomised superiority trial in the Netherlands, named the Three or Fivetrial. We plan to include 1200 women with an indication for IVF with at least four embryos available on day 2 after the oocyte retrieval. Women are randomly allocated to either (1) control group: embryo transfer on day 3 and cryopreservation of supernumerary good-quality embryos on day 3 or 4, or (2) intervention group: embryo transfer on day 5 and cryopreservation of supernumerary good-quality embryos on day 5 or 6. The primary outcome is the cLBR per oocyte retrieval. Secondary outcomes include LBR following fresh transfer, multiple pregnancy rate and time until pregnancy leading a live birth. We will also assess the obstetric and neonatal outcomes, costs and patients' treatment burden. Ethics and dissemination The study protocol has been approved by the Central Committee on Research involving Human Subjects in the Netherlands in June 2018 (CCMO NL 64060.000.18). The results of this trial will be submitted for publication in international peer-reviewed and in open access journals. Trial registration number Netherlands Trial Register (NL 6857)

    Lifestyle intervention prior to IVF does not improve embryo utilization rate and cumulative live birth rate in women with obesity: a nested cohort study

    Get PDF
    Study Question: Does lifestyle intervention consisting of an energy-restricted diet, enhancement of physical activity and motivational counseling prior to IVF improve embryo utilization rate (EUR) and cumulative live birth rate (CLBR) in women with obesity? Summary Answer: A 6-month lifestyle intervention preceding IVF improved neither EUR nor CLBR in women with obesity in the first IVF treatment cycle where at least one oocyte was retrieved. What Is Known Already: A randomized controlled trial (RCT) evaluating the efficacy of a low caloric liquid formula diet (LCD) preceding IVF in women with obesity was unable to demonstrate an effect of LCD on embryo quality and live birth rate: in this study, only one fresh embryo transfer (ET) or, in case of freeze-all strategy, the first transfer with frozen-thawed embryos was reported. We hypothesized that any effect on embryo quality of a lifestyle intervention in women with obesity undergoing IVF treatment is better revealed by EUR and CLBR after transfer of all fresh and frozen-thawed embryos. Study Design, Size, Duration: This is a nested cohort study within an RCT, the LIFEstyle study. The original study examined whether a 6-month lifestyle intervention prior to infertility treatment in women with obesity improved live birth rate, compared to prompt infertility treatment within 24 months after randomization. In the original study between 2009 and 2012, 577 (three women withdrew informed consent) women with obesity and infertility were assigned to a lifestyle intervention followed by infertility treatment (n = 289) or to prompt infertility treatment (n = 285). Participants/Materials, Setting, Methods: Only participants from the LIFEstyle study who received IVF treatment were eligible for the current analysis. In total, 137 participants (n = 58 in the intervention group and n = 79 in the control group) started the first cycle. In 25 participants, the first cycle was cancelled prior to oocyte retrieval mostly due to poor response. Sixteen participants started a second or third consecutive cycle. The first cycle with successful oocyte retrieval was used for this analysis, resulting in analysis of 51 participants in the intervention group and 72 participants in the control group. Considering differences in embryo scoring methods and ET day strategy between IVF centers, we used EUR as a proxy for embryo quality. EUR was defined as the proportion of inseminated/injected oocytes per cycle that was transferred or cryopreserved as an embryo. Analysis was performed per cycle and per oocyte/embryo. CLBR was defined as the percentage of participants with at least one live birth from the first fresh and subsequent frozen-thawed ET(s). In addition, we calculated the Z-score for singleton neonatal birthweight and compared these outcomes between the two groups. Main Results and the Role Of Chance: The overall mean age was 31.6 years and the mean BMI was 35.4 ± 3.2 kg/m2 in the intervention group, and 34.9 ± 2.9 kg/m2 in the control group. The weight change at 6 months was in favor of the intervention group (mean difference in kg vs the control group: −3.14, 95% CI: −5.73 to −0.56). The median (Q25; Q75) number of oocytes retrieved was 4.00 (2.00; 8.00) in the intervention group versus 6.00 (4.00; 9.75) in the control group, and was not significantly different, as was the number of oocytes inseminated/injected (4.00 [2.00; 8.00] vs 6.00 [3.00; 8.75]), normal fertilized embryos (2.00 [0.50; 5.00] vs 3.00 [1.00; 5.00]) and the number of cryopreserved embryos (2.00 [1.25; 4.75] vs 2.00 [1.00; 4.00]). The median (Q25; Q75) EUR was 33.3% (12.5%; 60.0%) in the intervention group and 33.3% (16.7%; 50.0%) in the control group in the per cycle analysis (adjusted B: 2.7%, 95% CI: −8.6% to 14.0%). In the per oocyte/embryo analysis, in total, 280 oocytes were injected or inseminated in the intervention group, 113 were utilized (transferred or cryopreserved, EUR = 40.4%); in the control group, EUR was 30.8% (142/461). The lifestyle intervention did not significantly improve EUR (adjusted odds ratio [OR]: 1.36, 95% CI: 0.94–1.98) in the per oocyte/embryo analysis, taking into account the interdependency of the oocytes per participant. CLBR was not significantly different between the intervention group and the control group after adjusting for type of infertility (male factor and unexplained) and smoking (27.5% vs 22.2%, adjusted OR: 1.03, 95% CI: 0.43–2.47). Singleton neonatal birthweight and Z-score were not significantly different between the two groups. Limitations, Reasons for Caution: This study is a nested cohort study within an RCT, and no power calculation was performed. The randomization was not stratified for indicated treatment, and although we corrected our analyses for baseline differences, there may be residual confounding. The limited absolute weight loss and the short duration of the lifestyle intervention might be insufficient to affect EUR and CLBR. Wider Implications of the Findings: Our data do not support the hypothesis of a beneficial short-term effect of lifestyle intervention on EUR and CLBR after IVF in women with obesity, although more studies are needed as there may be a potential clinically relevant effect on EUR.Zheng Wang, Henk Groen, Koen C. Van Zomeren, Astrid E.P. Cantineau, Anne Van Oers, Aafke P.A. Van Montfoort, Walter K.H. Kuchenbecker, Marie J. Pelinck, Frank J.M. Broekmans, Nicole F. Klijn, Eugenie M. Kaaijk, Ben W.J. Mol, Annemieke Hoek, and Jannie Van Echten-Arend

    In vitro fertilization does not increase the incidence of de novo copy number alterations in fetal and placental lineages

    Get PDF
    Although chromosomal instability (CIN) is a common phenomenon in cleavage-stage embryogenesis following in vitro fertilization (IVF)1,2,3, its rate in naturally conceived human embryos is unknown. CIN leads to mosaic embryos that contain a combination of genetically normal and abnormal cells, and is significantly higher in in vitro-produced preimplantation embryos as compared to in vivo-conceived preimplantation embryos4. Even though embryos with CIN-derived complex aneuploidies may arrest between the cleavage and blastocyst stages of embryogenesis5,6, a high number of embryos containing abnormal cells can pass this strong selection barrier7,8. However, neither the prevalence nor extent of CIN during prenatal development and at birth, following IVF treatment, is well understood. Here we profiled the genomic landscape of fetal and placental tissues postpartum from both IVF and naturally conceived children, to investigate the prevalence and persistence of large genetic aberrations that probably arose from IVF-related CIN. We demonstrate that CIN is not preserved at later stages of prenatal development, and that de novo numerical aberrations or large structural DNA imbalances occur at similar rates in IVF and naturally conceived live-born neonates. Our findings affirm that human IVF treatment has no detrimental effect on the chromosomal constitution of fetal and placental lineages

    Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. European Society of Human Genetics and European Society of Human Reproduction and Embryology.

    Get PDF
    In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation - ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and provide an update of selected topics that have evolved since 2005

    Cumulative pregnancy rates after six cycles of modified natural cycle IVF

    Get PDF
    This chapter deals with modified natural cycle IVF, in which treatment is aimed at the use of the one oocyte that naturally develops to dominance. Modified natural cycle IVF is a low-risk and patient-friendly treatment modality. The per cycle success rate is rather low, but thanks to the short duration of a treatment cycle and easy repeatability in consecutive cycles, cumulative success rates per patient and time to pregnancy are quite reasonable. In our centre, modified natural cycle IVF has been applied since 2001, first in a research setting and later as standard treatment. In this chapter, a study is described in which patients were offered a maximum of nine cycles of modified natural cycle IVF. Cumulative pregnancy rates and dropout behaviour of patients were analysed. We found that dropout rates rose sharply after three cycles, and furthermore that dropout seems selective in the sense that patients with poor chance for success tend to drop out. Subsequently, an extended series of 7097 cycles in 1744 patients is described, with analysis of success rates according to female patient age, indication for ART, BMI, and result of the first treatment cycle. We found that results are not different according to indication, success rates decline with rising age and BMI and that cancellation of oocyte retrieval in the first cycle seems to predict relatively poor overall outcome
    corecore