183 research outputs found

    The effects of complex chemistry on triple flames

    Get PDF
    The structure, ignition, and stabilization mechanisms for a methanol (CH3OH)-air triple flame are studied using Direct Numerical Simulations (DNS). The methanol (CH3OH)-air triple flame is found to burn with an asymmetric shape due to the different chemical and transport processes characterizing the mixture. The excess fuel, methanol (CH3OH), on the rich premixed flame branch is replaced by more stable fuels CO and H2, which burn at the diffusion flame. On the lean premixed flame side, a higher concentration of O2 leaks through to the diffusion flame. The general structure of the triple point features the contribution of both differential diffusion of radicals and heat. A mixture fraction-temperature phase plane description of the triple flame structure is proposed to highlight some interesting features in partially premixed combustion. The effects of differential diffusion at the triple point add to the contribution of hydrodynamic effects in the stabilization of the triple flame. Differential diffusion effects are measured using two methods: a direct computation using diffusion velocities and an indirect computation based on the difference between the normalized mixture fractions of C and H. The mixture fraction approach does not clearly identify the effects of differential diffusion, in particular at the curved triple point, because of ambiguities in the contribution of carbon and hydrogen atoms' carrying species

    Pattern of Reaction Diffusion Front in Laminar Flows

    Get PDF
    Autocatalytic reaction between reacted and unreacted species may propagate as solitary waves, namely at a constant front velocity and with a stationary concentration profile, resulting from a balance between molecular diffusion and chemical reaction. The effect of advective flow on the autocatalytic reaction between iodate and arsenous acid in cylindrical tubes and Hele-Shaw cells is analyzed experimentally and numerically using lattice BGK simulations. We do observe the existence of solitary waves with concentration profiles exhibiting a cusp and we delineate the eikonal and mixing regimes recently predicted.Comment: 4 pages, 3 figures. This paper report on experiments and simulations in different geometries which test the theory of Boyd Edwards on flow advection of chemical reaction front which just appears in PRL (PRL Vol 89,104501, sept2002

    Experimental Measurement of Local Burning Velocity Within a Rotating Flow

    Get PDF
    The final publication is available at link.springer.com.The work presented in this paper details the implementation of a new technique for the measurement of local burning velocity using asynchronous particle image velocimetry. This technique uses the local flow velocity ahead of the flame front to measure the movement of the flame by the surrounding fluid. This information is then used to quantify the local burning velocity by taking into account the translation of the flame via convection. In this paper the developed technique is used to study the interaction between a flame front and a single toroidal vortex for the case of premixed stoichiometric methane and air combustion. This data is then used to assess the impact of vortex structure on flame propagation rates. The burning velocity data demonstrates that there is a significant enhancement to the rate of flame propagation where the flame directly interacts with the rotating vortex. The increases found were significantly higher than expected but are supported by burning velocities [22-24] found in turbulent flames of the same mixture composition. Away from this interaction with the main vortex core, the flame exhibits propagation rates around the value recorded in literature for unperturbed laminar combustion [18-21]

    Impinging laminar jets at moderate Reynolds numbers and separation distances

    Get PDF
    An experimental and numerical study of impinging, incompressible, axisymmetric, laminar jets is described, where the jet axis of symmetry is aligned normal to the wall. Particle streak velocimetry (PSV) is used to measure axial velocities along the centerline of the flow field. The jet-nozzle pressure drop is measured simultaneously and determines the Bernoulli velocity. The flow field is simulated numerically by an axisymmetric Navier-Stokes spectral-element code, an axisymmetric potential-flow model, and an axisymmetric one-dimensional stream-function approximation. The axisymmetric viscous and potential-flow simulations include the nozzle in the solution domain, allowing nozzle-wall proximity effects to be investigated. Scaling the centerline axial velocity by the Bernoulli velocity collapses the experimental velocity profiles onto a single curve that is independent of the nozzle-to-plate separation distance. Axisymmetric direct numerical simulations yield good agreement with experiment and confirm the velocity profile scaling. Potential-flow simulations reproduce the collapse of the data; however, viscous effects result in disagreement with experiment. Axisymmetric one-dimensional stream-function simulations can predict the flow in the stagnation region if the boundary conditions are correctly specified. The scaled axial velocity profiles are well characterized by an error function with one Reynolds-number-dependent parameter. Rescaling the wall-normal distance by the boundary-layer displacement-thickness-corrected diameter yields a collapse of the data onto a single curve that is independent of the Reynolds number. These scalings allow the specification of an analytical expression for the velocity profile of an impinging laminar jet over the Reynolds number range investigated of 200 ≤ Re ≤ 1400.Jeffrey M. Bergthorson, Kazuo Sone, Trent W. Mattner, Paul E. Dimotakis, David G. Goodwin, and Dan I. Meiro
    corecore