6 research outputs found

    A simple algorithm for the identification of clinical COPD phenotypes

    No full text
    This study aimed to identify simple rules for allocating chronic obstructive pulmonary disease (COPD) patients to clinical phenotypes identified by cluster analyses.Data from 2409 COPD patients of French/Belgian COPD cohorts were analysed using cluster analysis resulting in the identification of subgroups, for which clinical relevance was determined by comparing 3-year all-cause mortality. Classification and regression trees (CARTs) were used to develop an algorithm for allocating patients to these subgroups. This algorithm was tested in 3651 patients from the COPD Cohorts Collaborative International Assessment (3CIA) initiative.Cluster analysis identified five subgroups of COPD patients with different clinical characteristics (especially regarding severity of respiratory disease and the presence of cardiovascular comorbidities and diabetes). The CART-based algorithm indicated that the variables relevant for patient grouping differed markedly between patients with isolated respiratory disease (FEV1, dyspnoea grade) and those with multi-morbidity (dyspnoea grade, age, FEV1 and body mass index). Application of this algorithm to the 3CIA cohorts confirmed that it identified subgroups of patients with different clinical characteristics, mortality rates (median, from 4% to 27%) and age at death (median, from 68 to 76 years).A simple algorithm, integrating respiratory characteristics and comorbidities, allowed the identification of clinically relevant COPD phenotypes.status: publishe

    Yellow fever reemergence in Venezuela – Implications for international travelers and Latin American countries during the COVID-19 pandemic

    No full text
    In the last few years, Venezuela has been the epicentre for multiple concurrent epidemics (syndemics) of emerging and reemerging infectious and tropical diseases. These events have severe implications for public health control efforts in Latin American and other regions due to the latent threat of case importation. At the top of the list, the resurgence of vector-borne diseases (VBD), such as malaria and dengue pose substantial challenges for the region [5]. On the other hand, the reemergence of vaccine-preventable diseases (VPD) due to low immunization coverage has led to new and multiple outbreaks of measles, diphtheria and other vaccine-preventable infections that are once again affecting many populations.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000153095https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000451070https://orcid.org/0000-0002-1447-1458https://orcid.org/0000-0002-9429-0058https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000000695Marlen.martinezg@[email protected]://scholar.google.com/citations?user=o3Y7mZwAAAAJ&hl=eshttps://scholar.google.es/citations?user=flSrsSIAAAAJ&hl=e

    A simple algorithm for the identification of clinical COPD phenotypes

    Get PDF
    This study aimed to identify simple rules for allocating chronic obstructive pulmonary disease (COPD) patients to clinical phenotypes identified by cluster analyses. Data from 2409 COPD patients of French/Belgian COPD cohorts were analysed using cluster analysis resulting in the identification of subgroups, for which clinical relevance was determined by comparing 3-year all-cause mortality. Classification and regression trees (CARTs) were used to develop an algorithm for allocating patients to these subgroups. This algorithm was tested in 3651 patients from the COPD Cohorts Collaborative International Assessment (3CIA) initiative. Cluster analysis identified five subgroups of COPD patients with different clinical characteristics (especially regarding severity of respiratory disease and the presence of cardiovascular comorbidities and diabetes). The CART-based algorithm indicated that the variables relevant for patient grouping differed markedly between patients with isolated respiratory disease (FEV1, dyspnoea grade) and those with multi-morbidity (dyspnoea grade, age, FEV1 and body mass index). Application of this algorithm to the 3CIA cohorts confirmed that it identified subgroups of patients with different clinical characteristics, mortality rates (median, from 4% to 27%) and age at death (median, from 68 to 76 years). A simple algorithm, integrating respiratory characteristics and comorbidities, allowed the identification of clinically relevant COPD phenotype
    corecore