58 research outputs found

    Different environmentaly-friendly strategies for loading waterborne polyurethane and polyurethane-urea dispersions

    Get PDF
    The environmental awareness has increased the research and development of eco-friendly green synthesis routes for many different applications, such as the waterborne polymer systems. Among others, waterborne polyurethanes (WBPU) and waterborne polyurethane-ureas (WBPUU) have gained attention due to their versatility in terms of composition and properties, making them suitable in a wide range of applications [1]. WBPU and WBPUU synthesis process is based on the incorporation of internal emulsifiers covalently bonded to the polymer obtaining stable water dispersions over months. Furthermore, the waterborne character of the dispersions provides the opportunity of incorporating water dispersible nanoentities and water soluble additives, enhancing or even providing additional properties. In this context, the use of renewable derivatives opens the possibility of enhancing the environmentally-friendly character. Among them, cellulose nanocrystals (CNC) are presented as a suitable candidate for the preparation of nanocomposites, considering their unique properties in the nanoscale dimension, provided by their high length/diameter aspect ratio and high specific mechanical properties [2]. Otherwise, the incorporation of natural water soluble additives has focused attention on extracts obtained from plants, consisting in biologically active compounds [3], whose antimicrobial character can determine the antimicrobial behavior of the WBPU and WBPUU. Therefore, in this work, different strategies have been analyzed for the preparation of WBPU-CNC nanocomposites and WBPUU-plant extracts varying their content as well as their incorporation route.info:eu-repo/semantics/publishedVersio

    Development of waterborne polyurethane-ureas added with plant extracts: Study of different incorporation routes and their influence on particle size, thermal, mechanical and antibacterial properties

    Get PDF
    Polyurethane-ureas are a versatile family of polymers which can be employed in a wide range of applications. Among them, waterborne polyurethane-urea (WBPUU) dispersions are gaining relevance in the field of environmentally-friendly products since their productive process adopts green synthesis routes, avoiding the use of organic solvents. Furthermore, their waterborne character can be exploited to incorporate several water compatible ingredients able to confer functional properties to the final materials. Among them, plant extracts, which are known to have relevant bioactivities, can be viewed as interesting candidates. Therefore, in this work, two extracts known to present antimicrobial activity (Melissa officinalis L. and Salvia officinalis L.) were obtained by the infusion method and incorporated into the WBPUU (1, 3 and 5 wt%) following different incorporation routes comprising its adding during different phases of the productive process (post-, in-situ and pre- methods). Thereafter films were prepared by solvent-casting and characterized from the viewpoint of physicochemical, thermal, mechanical, thermomechanical and antibacterial properties and morphologically. The studied incorporation routes resulted in different intercalation mechanisms that varied from extract positioned among the polyurethane-urea nanoparticles (post-method) to extract partially embedded inside them (in-situ and pre-methods), which produced stiffening or flexibilizing effects in the produced films, enhancing in general the antimicrobial characteristics of films after 4 days of incubation comparing with base WBPUU, especially when the extract is embedded.Financial support from the Basque Government (IT-776-13), the Spanish Ministry of Economy and Competitiveness (MINECO) (MAT2016-76294-R), POCI-01-0145-FEDER-006984 (LA LSRE-LCM) funded by ERDF through POCI-COMPETE2020 and FCT and NORTE-01-0145-FEDER-000006, funded by NORTE 2020, under PT2020 through ERDF is gratefully acknowledged. We also wish to acknowledge the “Macrobehaviour- Mesostructure-Nanotechnology” SGIker units from the University of the Basque Country, for their technical support. A.S-E thanks the University of the Basque Country for Ph.D. grant (PIF/UPV/12/201).Financial support from the Basque Government (IT-776-13), the Spanish Ministry of Economy and Competitiveness (MINECO) (MAT2016-76294-R), POCI-01-0145-FEDER-006984 (LA LSRE-LCM) funded by ERDF through POCI-COMPETE2020 and FCT and NORTE- 01-0145-FEDER-000006, funded by NORTE 2020, under PT2020 through ERDF is gratefully acknowledged. We also wish to acknowledge the “Macrobehaviour- Mesostructure-Nanotechnology” SGIker units from the University of the Basque Country, for their technical support. A.S-E thanks the University of the Basque Country for Ph.D. grant (PIF/UPV/12/201).info:eu-repo/semantics/publishedVersio

    Bacteriostatic ecffect of waterborne polyurethane-ureia films containing bioactive plant extracts incorporated by different routes

    Get PDF
    The environmental awarenessh as promoted the development of new materiats towards eco-friendty systems based on both,green synthesis processes as well as the renewable origin of the raw compounds. In this way,focusing on synthesis methods, the use of waterborne polyurethane-urea dispersions have gained attention due to their versatility leading to a wide variety of apptications broadening the range of appLications. In addition, it is worth nothing that the dispersibitity in water offers the possibitity of incorporating soluble additives such as plant extracts. Therefore, in this work Melissa officinalis L . ptant was setected in order to obtain bioactive plant extract, in order to be incorporated to a waterborne polyurethane-urea disspersion varying their content as well as using three differernt incorporation routes. These dispersions were characterized and employed in the preparation of films which were analyzed from the viewpoint of physicochemical, thermal and mechanical properties, among others. Finatty, the antibacterial properties of the films were analyzed after 1 and 4 days of incubation. Where it was observed that the content and incorporation route of the extract influenced in the behavior of the films against common pathogens (Staphylococcus aureus, Escherichio coli ond Pseudomonas aeruginosa.info:eu-repo/semantics/publishedVersio

    Spirulina (Arthrospira platensis) protein-rich extract as a natural emulsifier for oil-in-water emulsions: optimization through a sequential experimental design strategy

    Get PDF
    Spirulina (Arthrospira platensis) proteins have been proven to present emulsifying properties. In this work, a Spirulina protein-rich extract obtained by ultrasound extraction (SpE) was tested to stabilize oil-in-water (O/W) emulsions. For this purpose, a sequential experimental design strategy (Fractional Factorial Design (FFD) 24–1 followed by a Central Composite Rotatable Design (CCRD) 22)) was applied. The effect of four variables, SpE concentration, O/W weight ratio, pH and storage time, on emulsions’ zeta potential and number-mean droplet diameter was considered for the FFD 24–1, indicating SpE concentration and storage time as the relevant variables for the CCRD 22. According to zeta potential and number-mean droplet diameter evaluation, for the studied SpE concentration range (2–5 wt%), quite stable emulsions were obtained along the tested 30-days period. Even so, for 5%, visual inspection revealed extract segregation after 20-days. The optimal solution comprised 4 wt% of SpE, for an O/W weight ratio of 30/70 and a pH of 7.0 (number-mean droplet diameter of 55.66 nm and zeta potential of -43.83 mV). Overall, SpE has proven to be an excellent emulsifier, offering the potential to substitute animal-based proteins and synthetic emulsifiers. In addition, no signs of contamination by microorganisms were observed, suggesting that the SpE may also act as an antimicrobial agent.CIMO (Centro de Investigação de Montanha, Portugal) (UIDB/00690/2020), LSRE-LCM (Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Portugal) (UIDB/50020/2020; UIDP/50020/2020), and ALiCE (Associate Laboratory in Chemical Engineering, Portugal) (LA/P/0045/2020), funded by national funds through Fundação para CiĂȘncia e a Tecnologia/MinistĂ©rio da CiĂȘncia, Tecnologia e Ensino Superior (FCT/MCTES) (PIDDAC). National funding by Fundação para a CiĂȘncia e a Tecnologia (FCT) (Portugal), P.I., through the institutional scientific employment program contract with A. Santamaria-Echart, L. Barros, and A. Fernandes. FCT for the PhD research grant of Samara Cristina da Silva (SFRH/BD/148281/2019) and Giovana Colucci (2021. 05215. BD).info:eu-repo/semantics/publishedVersio

    Lipid composition optimization in spray congealing technique and testing with curcumin-loaded microparticles

    Get PDF
    Spray-congealing, a technique based on the fast solidification of sprayed molten lipids, is considered a novel strategy to encapsulate natural products. Among others, it is a safe, low cost, fast and reproducible technique, with rising interest for several applications (e.g. food applications). One of the key parameters for the application of this technique is the lipid solidification temperature, which can be modulated by optimizing the lipid composition. In this work, three lipid components (beeswax, carnauba wax, and medium-chain triglycerides (Miglyol 812)) were selected, and the mixture composition modelled using a simplex-centroid experimental design. Three different lipid compositions were chosen to validate the proposed model, then tested in the preparation of curcumin-loaded microparticles (1.5%, w/w). The produced microparticles were analysed in terms of colour, morphology, particle size, encapsulation efficiency and load, physicochemical, crystalline, and thermal properties. Results evidenced that microparticle's properties, including encapsulation efficiency, vary according to the used lipid mixture, supporting their tailoring role. This fact brings advantages in the design of microencapsulation systems based on spray congealing processes, broadening their applicability. Moreover, lipid composition optimisation was proved to be an important tool to precede the development of spray-congealing applications.info:eu-repo/semantics/publishedVersio

    Low-power frequency-conversion based temperature sensor for long-range passive RFID sensor applications.

    Get PDF
    A low-power frequency-conversion based temperature sensor interface optimized for passive UHF RFID applications have been designed and implemented. The interface is based on a reference capacitor that is charged by a temperature dependent current and discharged by a hysteresis loop. The circuit has been implemented in a standard CMOS 180nm process. The post-layout simulations show that the presented architecture is able to compensate for variations on the bandgap reference and cover a wide temperature range (140oC) with minimum active area (0:019mm2), reduced power consumption (-= 6:5gammaW), and reduced effect of PVT variations, accomplishing the design objectives
    • 

    corecore