9 research outputs found

    Investigation of in vitro and in silico effects of some novel carbazole Schiff bases on human carbonic anhydrase isoforms I and II

    No full text
    Carbonic anhydrases (CAs, EC4.2.1.1) are metalloenzymes that catalyse reversible hydration reaction of carbon dioxide to bicarbonate and protons. In recent years, there has been a great interest in inhibitors/activators of carbonic anhydrase isoenzymes. Therefore, we investigated the effects of four different carbazole Schiff base derivatives, which are believed to have a potential to be used as a drug, on human carbonic anhydrase (hCA) isoenzymes I and II under in vitro conditions. The IC50 values of carbazole Schiff base derivatives were found to be in the range of 32.09-151.2 μM for hCA isoenzyme I and 21.82-40.54 μM for hCA isoenzyme II. Among all compounds, (E)-3-(((9-Octyl-9H-carbazole-3-yl)imino)methyl)benzene-1,2-diol (C3) had the strongest inhibitory effect on hCA isoenzyme II. It was determined that 2,3,4-trimethoxy and 4-hydroxy phenyl containing carbazole compounds have selective inhibition against hCA II isoenzyme. Docking studies were performed against hCA I and II receptors using induced-fit docking method. The compounds had affinity scores varying from -7.74 ± 0.27 to -6.27 ± 0.07 kcal/mol for hCA I and from -8.04 ± 0.17 to -7.27 ± 0.18 kcal/mol for hCA II.Communicated by Ramaswamy H. Sarma

    Depletion of Tip60/Kat5 affects the hepatic antioxidant system in mice

    No full text
    Tat-interactive protein 60 kDa (TIP60, also known as lysine acetyltransferase 5 [KAT5]) is a member of the MYST protein family with histone acetyltransferase activity. Recent studies have reported that TIP60 has multiple functions in many signal transduction mechanisms, especially p53-mediated apoptosis. Although the activation of apoptosis signaling pathways requires the presence of cellular reactive oxygen species (ROS) at a certain level, an imbalance between the production and consumption of ROS in cells results in oxidative stress (OS). In this study, we investigated for the first time how the absence of the Tip60 gene in the liver affects gene expression, enzyme activity, and protein expression of the hepatic antioxidant members localized in the cytoplasm, including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST). First, we successfully generated liver-specific Tip60 knockout mice (mutants) using Cre/LoxP recombination. The reduced glutathione level and nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) expression, a marker of OS, increased significantly in the Tip60 mutant liver. Gene expression, activity, and protein expression of the enzymatic antioxidant system, including SOD, CAT, GR, GPx, and GST were investigated in mutants and control groups. Despite a significant correlation between the gene, enzyme activity, and protein content for CAT and GR, this was not true for SOD and GPx. The overall results suggest that TIP60 acts on the hepatic antioxidant system both at the gene and protein levels, but the actual effect of the deletion of Tip60 is observed at the protein level, especially for SOD and GPx.Ataturk University Scientific Research Projects Coordination Commission [PRJ2010/279, PRJ2013/293]Ataturk University Scientific Research Projects Coordination Commission, Grant/Award Numbers: PRJ2010/279, PRJ2013/29

    The determination of the carbonic anhydrases activators in vitro effect of mixed donor crown ethers

    No full text
    Carbonic anhydrases (CAs) play an important function in various physiological and pathological processes. Therefore, many researchers work in this field in order to design and synthesize new drugs. Both inhibitors and activators of CAs, which are associated with the diagnosis and treatment of many diseases, are very important. The emergence of the use of CA activators in the treatment of Alzheimer has led many scholars to work on this issue. In this study, CA activators and inhibitors are determined. The crown ethers compounds (1, 2, 3, 6, 7, 8, and 9) were found to cause activation on enzyme activities of hCA I and II. The AC50 values on hCA I and II of the compounds are in the range of 4.6565-374.979 μM. The 4 (IC50 ; 1.301 and 3.215 μM for hCA I and II) and 5 (IC50 ; 73.96 and 378.5 μM for hCA I and II) compounds were found to cause inhibition on enzyme activities of hCA I and II

    Synthesis, characterizations of aryl-substituted dithiodibenzothioate derivatives, and investigating their anti-Alzheimer's properties

    No full text
    This work has been supported by Siirt University Scientific Research Projects Unit with project number 2018-S_I_UM_UH-053.The main objective of the present study was to synthesize potential inhibitor/activators of AChE and hCA I-II enzymes, which are thought to be directly related to Alzheimer's disease. Dithiodibenzothioate compounds were synthesized by thioesterification. Six different thiolate compounds produced were characterized by 1H-, 13C-NMR, FT-IR, LC-MS/MS methods. HOMO-LUMO calculations and electronic properties of all synthesized compounds were comprehensively illuminated with a semi-empirical molecular orbital (SEMO) package for organic and inorganic systems using Austin Model 1 (AM1)-Hamiltonian as implemented in the VAMP module of Materials Studio. In addition, the inhibition effects of these compounds for AChE and hCA I-II in vitro conditions were investigated. It was revealed that TE-1, TE-2, TE-3, TE-4, TE-5, and TE-6 compounds inhibited the AChE under in vitro conditions. TE-1 compound activated the enzyme hCA I while TE-2, TE-3 TE-4 compounds inhibited it. TE-5 and TE-6, on the other hand, did not exhibit a regular inhibition profile. Similarly, TE-1 activated the hCA II enzyme whereas TE-2, TE-3, TE-4, and TE-5 compounds inhibited it. TE-6 compound did not have a consistent inhibition profile for hCA II. Docking studies were performed with the compounds against AChE and hCA I-II receptors using induced-fit docking method. Molecular Dynamics (MD) simulations for best effective three protein-ligand couple were conducted to explore the binding affinity of the considered compounds in semi-real in-silico conditions. Along with the MD results, TE-1-based protein complexes were found more stable than TE-5. Based on these studies, TE-1 compound could be considered as a potential drug candidate for AD. Communicated by Ramaswamy H. Sarm
    corecore