202 research outputs found

    Does a long reference list guarantee more citations? Analysis of Malaysian highly cited and review pPapers

    Get PDF
    Earlier publications have shown that the number of references as well as the number of received citations are field-dependent. Consequently, a long reference list may lead to more citations. The purpose of this article is to study the concrete relationship between number of references and citation counts. This article tries to find an answer for the concrete case of Malaysian highly cited papers and Malaysian review papers. Malaysian paper is a paper with at least one Malaysian affiliation. A total of 2466 papers consisting of two sets, namely 1966 review papers and 500 highly-cited articles, are studied. The statistical analysis shows that an increase in the number of references leads to a slight increase in the number of citations. Yet, this increase is not statistically significant. Therefore, a researcher should not try to increase the number of received citations by artificially increasing the number of references

    Community seismic network and localized earthquake situational awareness

    Get PDF
    Community-hosted seismic networks are a solution to the need for large numbers of sensors to operate over a seismically active region in order to accurately measure the size and location of an earthquake, assess resulting damage, and provide alerts. The Community Seismic Network is one such strong-motion network, currently comprising hundreds of elements located in California. It consists of low-cost, three-component, MEMS accelerometers capable of recording accelerations up to twice the level of gravity. The primary product of the network is to produce measurements of shaking of the ground and multiple locations of every upper floor in buildings, in the seconds during and following a major earthquake. Each sensor uses a small, dedicated ARM processor computer running Linux, and analyzes time series data in real time at hundreds of samples per second. The network reports on shaking parameters that indicate intensity of the structural response levels such as maximum floor acceleration and velocity, displacement of a floor in a building, as well as data products that depend on the response time histories. To do this, Cloud computing has been expanded through the use of statically defined subsets of sensors called cloudlets. These are smaller subsets of similar sensors that carry out customized calculations for those locations. The measurements are reported as rapidly as possible following an earthquake so that they may be incorporated into structural diagnosis and prognosis applications that can be used by first responders to prioritize their initial disaster management efforts. The cloudlet displays are customized for specific buildings and they show in real time: instantaneous displacement, inter-story drift, and resonant frequency and mode shapes using system identification software tools. The real-time display products are useful for decision-making about whether the potential for damage exists, what level of damage may have occurred and where, and whether total business disruption is necessary. City-wide dense monitoring makes it possible for emergency response managers to prioritize the target locations requiring first response on a block-by-block scale based on reports of shaking intensity

    The trend of changes in depression, anxiety and stress in men with lower limb trauma: A prospective study

    Get PDF
    Introduction: Activity restrictions can have potential impacts on the prevalence of mental disorders. However, in patients with lower limb traumas the problems and the physical disabilities are usually taken more into consideration than mental status, while they refer for further examinations. Therefore, this study is aimed to investigate the changes in the process of depression, anxiety and stress in men with lower limb traumas. Materials and Methods: In a prospective study the patients with lower limb traumas, who have been hospitalized in Amir Al-Mo�menin and Kowsar hospitals in Semnan since June 2012 to August 2015, were selected randomly and studied. The data was collected by demographic and incident questionnaire and depression, anxiety and stress questionnaire. At first the patients were asked to complete the questionnaires based on their psychological experience of one month prior to the trauma. Then same questionnaires were completed by the patients one and three months after the trauma. The data was analyzed using Friedman and Wilcoxon tests. Results: The data of 157 patients was analyzed. The results showed that there was a significant difference in the severity of depression disorders, anxiety and stress in three stages of the study (P0.05). Conclusion: The prevalence of depression, anxiety and stress is increased in people with lower limb traumas. Therefore it is recommended that the patients with lower limb traumas to be supported mentally, socially and economically. © 2016, Semnan University of Medical Sciences. All rights reserved

    Investigating centering, scan length, and arm position impact on radiation dose across 4 countries from 4 continents during pandemic: mitigating key radioprotection issues

    Get PDF
    Purpose: Optimization of CT scan practices can help achieve and maintain optimal radiation protection. The aim was to assess centering, scan length, and positioning of patients undergoing chest CT for suspected or known COVID-19 pneumonia and to investigate their effect on associated radiation doses. Methods: With respective approvals from institutional review boards, we compiled CT imaging and radiation dose data from four hospitals belonging to four countries (Brazil, Iran, Italy, and USA) on 400 adult patients who underwent chest CT for suspected or known COVID-19 pneumonia between April 2020 and August 2020. We recorded patient demographics and volume CT dose index (CTDIvol) and dose length product (DLP). From thin-section CT images of each patient, we estimated the scan length and recorded the first and last vertebral bodies at the scan start and end locations. Patient mis-centering and arm position were recorded. Data were analyzed with analysis of variance (ANOVA). Results: The extent and frequency of patient mis-centering did not differ across the four CT facilities (>0.09). The frequency of patients scanned with arms by their side (11–40% relative to those with arms up) had greater mis-centering and higher CTDIvol and DLP at 2/4 facilities (p = 0.027–0.05). Despite lack of variations in effective diameters (p = 0.14), there were significantly variations in scan lengths, CTDIvol and DLP across the four facilities (p < 0.001). Conclusions: Mis-centering, over-scanning, and arms by the side are frequent issues with use of chest CT in COVID-19 pneumonia and are associated with higher radiation doses

    Community seismic network and localized earthquake situational awareness

    Get PDF
    Community-hosted seismic networks are a solution to the need for large numbers of sensors to operate over a seismically active region in order to accurately measure the size and location of an earthquake, assess resulting damage, and provide alerts. The Community Seismic Network is one such strong-motion network, currently comprising hundreds of elements located in California. It consists of low-cost, three-component, MEMS accelerometers capable of recording accelerations up to twice the level of gravity. The primary product of the network is to produce measurements of shaking of the ground and multiple locations of every upper floor in buildings, in the seconds during and following a major earthquake. Each sensor uses a small, dedicated ARM processor computer running Linux, and analyzes time series data in real time at hundreds of samples per second. The network reports on shaking parameters that indicate intensity of the structural response levels such as maximum floor acceleration and velocity, displacement of a floor in a building, as well as data products that depend on the response time histories. To do this, Cloud computing has been expanded through the use of statically defined subsets of sensors called cloudlets. These are smaller subsets of similar sensors that carry out customized calculations for those locations. The measurements are reported as rapidly as possible following an earthquake so that they may be incorporated into structural diagnosis and prognosis applications that can be used by first responders to prioritize their initial disaster management efforts. The cloudlet displays are customized for specific buildings and they show in real time: instantaneous displacement, inter-story drift, and resonant frequency and mode shapes using system identification software tools. The real-time display products are useful for decision-making about whether the potential for damage exists, what level of damage may have occurred and where, and whether total business disruption is necessary. City-wide dense monitoring makes it possible for emergency response managers to prioritize the target locations requiring first response on a block-by-block scale based on reports of shaking intensity

    Iranian joint registry (iranian national hip and knee arthroplasty registry)

    Get PDF
    Periodic evaluation and monitoring the health and economic outcome of joint replacement surgery is a common and popular process under the territory of joint registries in many countries. In this article we introduce the methodology used for the foundation of the National Iranian Joint Registry (IJR) with a joint collaboration of the Social Security Organization (SSO) and academic research departments considering the requirements of the Iran's Ministry of Health and Education. ©BY THE ARCHIVES OF BONE AND JOINT SURGERY

    Investigating centering, scan length, and arm position impact on radiation dose across 4 countries from 4 continents during pandemic: Mitigating key radioprotection issues

    Get PDF
    Purpose: Optimization of CT scan practices can help achieve and maintain optimal radiation protection. The aim was to assess centering, scan length, and positioning of patients undergoing chest CT for suspected or known COVID-19 pneumonia and to investigate their effect on associated radiation doses. Methods: With respective approvals from institutional review boards, we compiled CT imaging and radiation dose data from four hospitals belonging to four countries (Brazil, Iran, Italy, and USA) on 400 adult patients who underwent chest CT for suspected or known COVID-19 pneumonia between April 2020 and August 2020. We recorded patient demographics and volume CT dose index (CTDIvol) and dose length product (DLP). From thin-section CT images of each patient, we estimated the scan length and recorded the first and last vertebral bodies at the scan start and end locations. Patient mis-centering and arm position were recorded. Data were analyzed with analysis of variance (ANOVA). Results: The extent and frequency of patient mis-centering did not differ across the four CT facilities (>0.09). The frequency of patients scanned with arms by their side (11�40 relative to those with arms up) had greater mis-centering and higher CTDIvol and DLP at 2/4 facilities (p = 0.027�0.05). Despite lack of variations in effective diameters (p = 0.14), there were significantly variations in scan lengths, CTDIvol and DLP across the four facilities (p < 0.001). Conclusions: Mis-centering, over-scanning, and arms by the side are frequent issues with use of chest CT in COVID-19 pneumonia and are associated with higher radiation doses. © 202

    Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds

    Get PDF
    Among the wide range of strategies to target skin repair/regeneration, tissue engineering (TE) with stem cells at the forefront, remains as the most promising route. Cell sheet (CS) engineering is herein proposed, taking advantage of particular cell-cell and cell-extracellular matrix (ECM) interactions and subsequent cellular milieu, to create 3D TE constructs to promote full-thickness skin wound regeneration. Human adipose derived stem cells (hASCs) CS were obtained within five days using both thermoresponsive and standard cell culture surfaces. hASCs-based constructs were then built by superimposing three CS and transplanted into full-thickness excisional mice skin wounds with delayed healing. Constructs obtained using thermoresponsive surfaces were more stable than the ones from standard cell culture surfaces due to the natural adhesive character of the respective CS. Both CS-generating strategies lead to prolonged hASCs engraftment, although no transdifferentiation phenomena were observed. Moreover, our findings suggest that the transplanted hASCs might be promoting neotissue vascularization and extensively influencing epidermal morphogenesis, mainly through paracrine actions with the resident cells. The thicker epidermis, with a higher degree of maturation characterized by the presence of rete ridges-like structures, as well as a significant number of hair follicles observed after transplantation of the constructs combining the CS obtained from the thermoresponsive surfaces, reinforced the assumptions of the influence of the transplanted hASCs and the importance of the higher stability of these constructs promoted by cohesive cell-cell and cell-ECM interactions. Overall, this study confirmed the potential of hASCs CS-based constructs to treat full-thickness excisional skin wounds and that their fabrication conditions impact different aspects of skin regeneration, such as neovascularisation, but mainly epidermal morphogenesis.We would like to thank Hospital da Prelada (Porto), in particular, to Dr. Paulo Costa for the lipoaspirates collection and for financial support by Skingineering (PTDC/SAU-OSM/099422/2008), Portuguese Foundation for Science and Technology (FCT) funded project. The research leading to these results has also received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. REGPOT-CT2012-316331-POLARIS

    ACE2 Deficiency Enhances Angiotensin II-Mediated Aortic Profilin-1 Expression, Inflammation and Peroxynitrite Production

    Get PDF
    Inflammation and oxidative stress play a crucial role in angiotensin (Ang) II-mediated vascular injury. Angiotensin-converting enzyme 2 (ACE2) has recently been identified as a specific Ang II-degrading enzyme but its role in vascular biology remains elusive. We hypothesized that loss of ACE2 would facilitate Ang II-mediated vascular inflammation and peroxynitrite production. 10-week wildtype (WT, Ace2+/y) and ACE2 knockout (ACE2KO, Ace2−/y) mice received with mini-osmotic pumps with Ang II (1.5 mg.kg−1.d−1) or saline for 2 weeks. Aortic ACE2 protein was obviously reduced in WT mice in response to Ang II related to increases in profilin-1 protein and plasma levels of Ang II and Ang-(1–7). Loss of ACE2 resulted in greater increases in Ang II-induced mRNA expressions of inflammatory cytokines monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β, and IL-6 without affecting tumor necrosis factor-α in aortas of ACE2KO mice. Furthermore, ACE2 deficiency led to greater increases in Ang II-mediated profilin-1 expression, NADPH oxidase activity, and superoxide and peroxynitrite production in the aortas of ACE2KO mice associated with enhanced phosphorylated levels of Akt, p70S6 kinase, extracellular signal-regulated kinases (ERK1/2) and endothelial nitric oxide synthase (eNOS). Interestingly, daily treatment with AT1 receptor blocker irbesartan (50 mg/kg) significantly prevented Ang II-mediated aortic profilin-1 expression, inflammation, and peroxynitrite production in WT mice with enhanced ACE2 levels and the suppression of the Akt-ERK-eNOS signaling pathways. Our findings reveal that ACE2 deficiency worsens Ang II-mediated aortic inflammation and peroxynitrite production associated with the augmentation of profilin-1 expression and the activation of the Akt-ERK-eNOS signaling, suggesting potential therapeutic approaches by enhancing ACE2 action for patients with vascular diseases

    Heme Oxygenase-1 Accelerates Cutaneous Wound Healing in Mice

    Get PDF
    Heme oxygenase-1 (HO-1), a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin was observed on the 2nd and 3rd days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-1 in wounded skin was relatively weak and delayed in diabetic (db/db) mice, in which also angiogenesis and wound closure were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be improved by HO-1 gene transfer
    corecore