24 research outputs found

    Detritus type alters the outcome of interspecific competition between Aedes aegypti and Aedes albopictus (Diptera : Culicidae)

    Get PDF
    Many studies of interspecific competition between Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae) larvae show that Ae. albopictus are superior resource competitors to Ae. aegypti. Single-species studies indicate that growth and survival of Ae. albopictus and Ae. aegypti larvae are affected by the type of detritus present in containers, which presumably affects the amount and quality of microorganisms that the mosquito larvae consume. We tested whether different detritus types alter the intensity of larval competition by raising 10 different density/species combinations of Ae. albopictus and Ae. aegypti larvae under standard laboratory conditions, with one of four detritus types (oak, pine, grass, or insect) provided as a nutrient base. Intraspecific competitive effects on survival were present with all detritus types. Ae. albopictus survivorship was unaffected by interspecific competition in all treatments. Negative interspecific effects on Ae. aegypti survivorship were present with three of four detritus types, but absent with grass. Estimated finite rate of increase (lambda\u27) was lower with pine detritus than with any other detritus type for both species. Furthermore, Ae. aegypti lambda\u27 was negatively affected by high interspecific density in all detritus types except grass. Thus, our experiment confirms competitive asymmetry in favor of Ae. albopictus with oak, pine, or insect detritus, but also demonstrates that certain detritus types may eliminate interspecific competition among the larvae of these species, which may allow for stable coexistence. Such variation in competitive outcome with detritus type may help to account for observed patterns of coexistence/exclusion of Ae. albopictus and Ae. aegypti in the field

    Contributions of temporal segregation, oviposition choice, and non-additive effects of competitors to invasion success of Aedes japonicus (Diptera: Culicidae) in North America

    Get PDF
    The mosquito Aedes japonicus (Diptera: Culicidae) has spread rapidly through North America since its introduction in the 1990s. The mechanisms underlying its establishment in container communities occupied by competitors Aedes triseriatus and Aedes albopictus are unclear. Possibilities include (A) temporal separation of A. japonicus from other Aedes, (B) oviposition avoidance by A. japonicus of sites containing heterospecific Aedes larvae, and (C) non-additive competitive effects in assemblages of multiple Aedes. Containers sampled throughout the summer in an oak-hickory forest near Eureka, MO showed peak abundance for A. japonicus occurring significantly earlier in the season than either of the other Aedes species. Despite this, A. japonicus co-occurred with one other Aedes species in 53% of samples when present, and co-occurred with both other Aedes in 18% of samples. In a field oviposition experiment, A. japonicus laid significantly more eggs in forest edge containers than in forest interior containers, but did not avoid containers with low or high densities of larvae of A. triseriatus, A. albopictus, or both, compared to containers without larvae. Interspecific competitive effects (measured as decrease in the index of performance, h') of A. triseriatus or A. albopictus alone on A. japonicus larvae were not evident at the densities used, but the effect of both Aedes combined was significantly negative and super-additive of effects of individual interspecific competitors. Thus, neither oviposition avoidance of competitors nor non-additive competitive effects contribute to the invasion success of A. japonicus in North America. Distinct seasonal phenology may reduce competitive interactions with resident Aedes.Peer reviewedEntomology and Plant Patholog

    Balancing forage production, seed yield, and pest management in the perennial sunflower silphium integrifolium (Asteraceae)

    Get PDF
    The perennial sunflower Silphium integrifolium Michx. (Asteraceae), also known as silflower, is a prospective dual-purpose forage plus grain crop. Pre-flowering biomass harvest for animal feed and the subsequent delay in plant growth and anthesis has the potential to benefit seed yield and/or offset yield loss from native pests, such as the native North American Eucosma giganteana (Lepidopera: Tortricidae). The aim of this study was to develop a cropping technology for silflower to (A) balance forage and grain production and (B) minimize seed loss. Silflower produced high-quality forage, but biomass harvest in early spring reduced same-season seed production by 45%. Despite significantly delaying flowering, forage harvest alone did not effectively reduce Eucosma colonization, although treating plants with the insecticide permethrin did reduce colonization. Our results do not support the proposal that S. integrifolium could be profitably harvested for both high quality forage and as an oilseed grain within the same season. Nevertheless, our findings suggest the possibility of developing a strategy of alternating between forage or seed production, depending on their differential economic values. The choice between harvesting biomass vs. seed could be made much later in the season for this perennial crop than the choice of planting an annual forage vs. annual grain crop.Fil: Vilela, Alejandra Elena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Museo Paleontológico Egidio Feruglio; ArgentinaFil: González Paleo, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Museo Paleontológico Egidio Feruglio; ArgentinaFil: Ravetta, Damián Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Museo Paleontológico Egidio Feruglio; ArgentinaFil: Murrell, Ebony G.. The Land Institute.; Estados UnidosFil: Van Tassel, David. The Land Institute.; Estados Unido

    Effect of two commercial herbicides on life history traits of a human disease vector, Aedes aegypti, in the laboratory setting

    Get PDF
    Some mosquito species utilize the small niches of water that are abundant in farmland habitats. These niches are susceptible to effects from agricultural pesticides, many of which are applied aerially over large tracts of land. One principal form of weed control in agricultural systems involves the development of herbicide-tolerant crops. The impact of sub-agricultural levels of these herbicides on mosquito survival and life-history traits of resulting adults have not been determined. The aim of this study was to test the effect of two commercial herbicides (Beyond and Roundup) on the survivorship, eclosion time, and body mass of Aedes aegypti. First instar A. aegypti larvae were exposed to varying concentrations (270, 550 and 820ug/m2 of glyphosate and 0.74, 1.49, 2.24uL imazamox/m2), all treatments being below recommended application rates, of commercial herbicides in a controlled environment and resulting adult mosquitoes were collected and weighed. Exposure to Roundup had a significant negative effect on A. aegypti survivorship at medium and high sub-agricultural application concentrations, and negatively affected adult eclosion time at the highest concentration. However, exposure to low concentrations of Beyond significantly increased A. aegypti survivorship, although adult female mass was decreased at medium sub-agricultural concentrations. These results demonstrate that low concentrations of two different herbicides, which can occur in rural larval habitats as a result of spray drift, can affect the same species of mosquito in both positive and negative ways depending on the herbicide applied. The effects of commercial herbicides on mosquito populations could have an important effect on disease transmission within agricultural settings, where these and other herbicides are extensively applied to reduce weed growth.Peer reviewedEntomology and Plant Patholog

    Competitive abilities in experimental microcosms are accurately predicted by a demographic index for R*.

    Get PDF
    Resource competition theory predicts that R*, the equilibrium resource amount yielding zero growth of a consumer population, should predict species' competitive abilities for that resource. This concept has been supported for unicellular organisms, but has not been well-tested for metazoans, probably due to the difficulty of raising experimental populations to equilibrium and measuring population growth rates for species with long or complex life cycles. We developed an index (R(index)) of R* based on demography of one insect cohort, growing from egg to adult in a non-equilibrium setting, and tested whether R(index) yielded accurate predictions of competitive abilities using mosquitoes as a model system. We estimated finite rate of increase (λ') from demographic data for cohorts of three mosquito species raised with different detritus amounts, and estimated each species' R(index) using nonlinear regressions of λ' vs. initial detritus amount. All three species' R(index) differed significantly, and accurately predicted competitive hierarchy of the species determined in simultaneous pairwise competition experiments. Our R(index) could provide estimates and rigorous statistical comparisons of competitive ability for organisms for which typical chemostat methods and equilibrium population conditions are impractical

    Estimates of intra- and interspecific competitive effects for the pairwise response surface experiment <i>Aedes albopictus</i> vs. <i>Culex pipiens</i>.

    No full text
    <p>For β subscripts the first subscript indicates the species having a competitive effect and the second subscript indicates the species being affected: <i>a</i> = <i>A. albopictus</i>, <i>p = Culex pipiens.</i><b>Bold face</b> indicates whether the inter- or intraspecific effect is greater (i.e., more negative) within a row.</p

    Experimental response of mean λ′ for each species by detritus amounts.

    No full text
    <p>Data points for <i>A. albopictus</i> and <i>C. pipiens</i> are offset. The curves represent the quadratic function for each species, while the arrows indicate values of <i>x</i> at which λ′ = 1.0 (R<sub>Index</sub>) for <i>A. albopictus</i> (<b>A</b>), <i>A. aegypti</i> (<b>B</b>), and <i>C. pipiens</i> (<b>C</b>).</p
    corecore