659 research outputs found

    Evaluation of Hybrid-III 6YO ATD chest jacket shape and position

    Full text link
    In previous work, belt fit on the Hybrid-III six-year-old (6YO) anthropomorphic test device (ATD) was found to depend on the positioning of the chest jacket of the ATD. Moreover, differences were noted between jackets manufactured by Denton-ATD and First Technology Safety Systems (FTSS). The objective of this study was to quantify differences between the manufacturers’ jackets by detailed measurements of exemplar jackets and to assess the effects of jacket installation procedure on jacket position. A custom fixture was designed to hold rigidly the thorax, pelvis, and head of a 6YO ATD while allowing the chest jacket to be installed and removed. Testing was conducted with two jackets from FTSS and one from Denton. In pilot testing, jacket position was affected by the installation procedure and by the initial position of the shoulder components. Detailed measurements were made using a portable surface measurement device (laser scanner) with each jacket in six conditions defined by initial shoulder position and the manner in which the jacket was installed. Quantitative comparisons in jacket position and shape were conducted in software using the laserscan data. Notable differences in jacket shape were observed between the FTSS and Denton jackets, with the FTSS jacket having a wider, flatter profile in the lateral shoulder area and the Denton jacket extending more forward in the upper chest area. However, the effects of jacket positioning were much larger than differences between manufacturers in jacket shape. Pulling the jacket down firmly resulted in jacket shoulder positions relative to the spine differing by more than 25 mm from those obtained by pulling the jacket down lightly, with results dependent on the initial positions of the shoulder components. The results of this study indicate that careful attention to jacket positioning is needed to obtain a consistent relationship between the chest and shoulder surfaces and the ATD skeleton. Pulling the jacket down firmly after initially placing the shoulder components in a downward/rearward position is suggested. Monitoring and adjusting the location of reference points on the jacket relative to specified hard points on the ATD skeletonprovides a means for ensuring that the jacket is consistently placed for static or dynamic testing.National Highway Traffic Safety Administrationhttp://deepblue.lib.umich.edu/bitstream/2027.42/89865/1/102811.pd

    Effects of obesity on seat belt fit

    Full text link
    Obesity has been shown to increase the risk of some types of injury in crashes. One hypothesis is that obesity adversely effects belt fit by changing the routing of the belt relative to the underlying skeletal structures. To evaluate this hypothesis, belt fit was measured in a laboratory study of 54 men and women, 48 percent of whom were obese, with a body mass index (BMI) of 30 kg/m2 or greater. Test conditions included a wide range of upper and lower belt anchorage locations and ranges of seat height, seat cushion angle, and seat back angle spanning a large fraction of current vehicle front and rear seats. In some conditions, foot position was restricted to simulate the typical situation in the second row of a small sedan. Across individuals, an increase in BMI of 10-kg/m2 was associated with a lap belt positioned 43 mm further forward and 21 mm higher relative to the anterior-superior iliac spines of the pelvis. Each 10-kg/m2 increase in BMI was associated with an increase in lap belt webbing length of 130 mm. The worsening of lap belt fit with restricted foot position was slightly greater for obese participants. Obesity was associated with a more-inboard shoulder belt routing across a wide range of upper belt anchorage locations, and the shoulder belt webbing length between the D-ring and latchplate increased by an average of 60 mm with each 10-kg/m2 increase in BMI. The results suggest that obesity effectively introduces slack in the seat belt system by routing the belt further away from the skeleton. Particularly in frontal crashes, but also in rollovers and other scenarios, this slack will result in increased excursions and an increased likelihood and severity of contacts with the interior. The higher routing of the lap belt with respect to the pelvis also increases the likelihood of submarining in frontal crashes.National Highway Traffic Safety Administrationhttp://deepblue.lib.umich.edu/bitstream/2027.42/89867/1/102813.pd

    Improving the repeatability and reproducibility of belt fit measurement with 6YO and 10YO ATDs

    Full text link
    In previous work, researchers at the University of Michigan Transportation Research Institute (UMTRI) developed a method for quantifying the belt fit provided by belt-positioning boosters by measuring the belt location relative to the six- and ten-year-old Hybrid-III dummies. In another study, the torso and lap belt scores obtained by this method were found to be closely related to the belt fit obtained by similar-size children across a wide range of booster and belt conditions. The Insurance Institute for Highway Safety (IIHS) adapted the UMTRI procedure to develop a rating system for booster belt fit, but adoption by other labs has been slowed by difficulty in obtaining repeatable results. The current study was undertaken to improve the repeatability and reproducibility across operators of the procedure. The modifications made by IIHS were studied and most incorporated, and a number of other issues were examined through pilot testing. A revised version of the procedure was tested with repeated measurements by three operators in six boosters. The results were analyzed to quantify the variance associated with the operators, the installation of the booster and dummy, and the routing of the belt. The results show that trained operators can perform the procedure with minimal systematic bias across boosters. The variability within booster varies considerably, with some boosters producing higher precision measurements due to the design of their belt-routing features. For any particular booster, the booster and dummy installation process accounts for about half the variability in the belt fit scores with the remainder due to variability in the belt routing and other measurement variability. Based on these findings, multiple measurements of belt fit in each booster are recommended to establish the desired level of confidence in the true belt fit. Straightforward statistical methods involving confidence intervals are recommended for establishing objective test methods. More testing will be needed to determine the reproducibility of the method across laboratories.National Highway Traffic Safety Administrationhttp://deepblue.lib.umich.edu/bitstream/2027.42/89866/1/102812.pd

    Labels, instructions and features of convertible Child Restraint Systems (CRS): evaluating their effects on CRS installation errors

    Full text link
    This report documents a study of how CRS features, labels, and instructions contribute to CRS installation errors. Task 1A focused on assessing different physical features of 16 convertible CRS, while Task 1B evaluated baseline and modified versions of labels and instructions for two CRS models. For each phase of testing, 32 subjects were recruited based on their education level (high or low) and experience with installing CRS (none or experienced). Each subject was asked to perform four child restraint installations in a 2006 Pontiac G6 sedan. An 18-month-old CRABI anthropometric test device (ATD) weighing 25 lb was used for all installations. Each subject installed two CRS forward-facing (FF), one with LATCH and one with seatbelt, and two CRS rear-facing (RF), one with LATCH and one with the seatbelt. For Task 1A, each subject installed four of the sixteen convertible CRS. For Task 1B, each subject installed a Graco ComfortSport and Evenflo Titan twice, where each CRS had one of eight alternate instruction manuals and one of eight alternate label conditions. After each installation, the experimenter evaluated 42 factors for each installation, such as choice of belt routing path, tightness of installation, and harness snugness. Analyses used linear mixed models to identify CRS installation outcomes associated with CRS features or label/ instruction type. LATCH connector type, LATCH belt adjustor type, and the presence of belt lockoffs are associated with the tightness of the CRS installation. The type of harness shoulder height adjuster is associated with the rate of achieving a snug harness. Correct tether use is associated with the tether storage method. In general, subject assessments of the ease of use of CRS features are not highly correlated with the quality of their installation, suggesting a need for feedback with incorrect installations. The results of testing alternative labels and instructions indicate that no alternative condition significantly improved CRS installation compared to baseline conditions across all potential installation errors that were evaluated. An unintended consequence of using “combined” labels (incorporating all of the variations recommended by human factors experts that were tested individually in other conditions) is that subjects were less likely to use the CRS manual. The most promising alternative manual is a video version. Neither the labels nor manuals with improved graphics showed substantial benefit compared to baseline, even though graphics-based manuals and labels score well using the ISO and NHTSA ease-of-use rating system. The effects of varying labels and manuals on installation error are small compared to the effects of different CRS designs. The data from this study provide quantitative assessments of some CRS features that are associated with reductions in CRS installation errors. This information can be used to update the NHTSA CRS ease-of-use rating system to account for recently developed CRS features. Based on human factors recommendations, suggestions are made for assessing “clear” labels and instructions and modifying FMVSS 213 requirements to facilitate clearer labels and instructions.VTTI, National Highway Traffic Safety Administrationhttp://deepblue.lib.umich.edu/bitstream/2027.42/89861/1/102795.pd

    Validation of On-Orbit Methodology for the Assessment of Cardiac Function and Changes in the Circulating Volume Using Ultrasound and "Braslet-M" Occlusion Cuffs

    Get PDF
    Recent advances in remotely guided imaging techniques on ISS allow the acquisition of high quality ultrasound data using crewmember operators with no medical background and minimal training. However, ongoing efforts are required to develop and validate methodology for complex imaging protocols to ensure their repeatability, efficiency, and suitability for use aboard the ISS. This Station Developmental Test Objective (SDTO) tests a cardiovascular evaluation methodology that takes advantage of the ISS Ultrasound capability, the Braslet-M device, and modified respiratory maneuvers (Valsalva and Mueller), to broaden the spectrum of anatomical and functional information on human cardiovascular system during long-duration space missions. The proposed methodology optimizes and combines new and previously demonstrated methods, and is expected to benefit medically indicated assessments, operational research protocols, and data collections for science. Braslet-M is a current Russian operational countermeasure that compresses the upper thigh to impede the venous return from lower extremities. The goal of the SDTO is to establish and validate a repeatable ultrasound-based methodology for the assessment of a number of cardiovascular criteria in microgravity. Braslet-M device is used as a means to acutely alter volume distribution while focused ultrasound measurements are performed. Modified respiratory maneuvers are done upon volume manipulations to record commensurate changes in anatomical and functional parameters. The overall cardiovascular effects of the Braslet-M device are not completely understood, and although not a primary objective of this SDTO, this effort will provide pilot data regarding the suitability of Braslet-M for its intended purpose, effects, and the indications for its use

    Right Ventricular Tissue Doppler in Space Flight

    Get PDF
    Tissue Doppler (TD) registers movement of a given sample of cardiac tissue throughout the cardiac cycle. TD spectra of the right ventricle (RV) were obtained from a long-duration ISS crewmember as a portion of an ongoing experiment ("Braslet" test objective). To our knowledge, this is the first report of RV TD conducted in space flight, and the data represent reproducibility and fidelity of this application in space and serve as the first "space normal" data set. Methods RV TD was performed by astronaut scientists remotely guided by an ultrasound expert from Mission Control Center, Houston, TX. In four of the subjects, RV TD was acquired from the free wall near the tricuspid annulus in two separate sessions 4 to 7 days apart. A fifth subject had only one session. All digital DICOM frames were exported for off-line analysis. Systolic (S ), early diastolic (E ) and late diastolic (A ) velocities were measured. RV Tei-index was calculated using diastolic and systolic time intervals as a combined measure of myocardial performance. Results and Discussion The mean values from the first 4 subjects (8 sessions) were used as the on-orbit reference data, and subject 5 was considered as a hypothetical patient for comparison (see Table). The greatest difference was in the early diastolic A (31 %) yet the standard deviation (a) for A amongst the reference subjects was 2.25 (mean = 16.02). Of interest is the Tei index, a simple and feasible indicator of overall ventricular function; it was similar amongst all the subjects. The late diastolic A seems to compensate for the variance in E . Normal Tei index for the RV is < 0.3, yet our data show all but one subject consistently above this level, notwithstanding their nominal responses to daily exercise in microgravity. These data remind us that the physiology of RV preload in altered gravity environments is still not completely understood

    Assessing child belt fit, volume I: effects of vehicle seat and belt geometry on belt fit for children with and without belt positioning booster seats

    Full text link
    A laboratory study was conducted to quantify the effects of belt-positioning boosters on lap and shoulder belt fit. Postures and belt fit were measured for forty-four boys and girls ages 5 to 12 in four highback boosters, one backless booster, and on a vehicle seat without a booster. Belt anchorage locations were varied over a wide range. Seat cushion angle, seat back angle, and seat cushion length were varied in the no-booster conditions. All boosters produced better mean lap belt fit than was observed in the no-booster condition, but the differences among boosters were relatively large. With one midrange belt configuration, the lap belt was not fully below the anterior-superior iliac spine (ASIS) landmark on the front of the pelvis for 89% of children in one booster, and 75% of children failed to achieve that level of belt fit in another. In contrast, the lap belt was fully below the ASIS for all but two children in the best-performing booster. Child body size had a statistically significant but relatively small effect on lap belt fit. The largest children sitting without a booster had approximately the same lap belt fit as the smallest children experienced in the worst-performing booster. Increasing lap belt angle relative to horizontal produced significantly better lap belt fit in the no-booster condition, but the boosters isolated the children from the effects of lap belt angles. Reducing seat cushion length in the no-booster condition improved lap belt fit but changing cushion angle did not. Belt upper anchorage (D-ring) location had a strong effect on shoulder belt fit in conditions without shoulder belt routing from the booster. Unexpectedly, the worst average shoulder belt fit was observed in one highback booster with a poorly positioned shoulder belt routing clip. The shoulder belt was routed more outboard, on average, with a backless booster than without a booster, but raising the child also amplified the effect of D-ring location, such that children were more likely to experience poor shoulder belt fit due to outboard and forward D-ring locations when sitting on the booster. Taller children experienced more-outboard shoulder belt fit in conditions without shoulder belt routing by the booster and in the one booster with poor shoulder belt routing. Adjustable shoulder belt routing on three of the highback boosters effectively eliminated stature effects, providing approximately the same shoulder belt fit for all children. Seat back angle did not have a significant effect on shoulder belt fit. The belt fit was measured in each test condition using the 6YO and 10YO Hybrid-III ATDs. ATD belt fit was strongly correlated with child belt fit across test conditions, but offsets between the ATD and child belt fit scores were observed due to anatomical and postural differences between the ATDs and children. The results of this study have broad applicability toward the improvement of occupant restraints for children. The data show substantial effects of booster design on belt fit, particularly the effects of alternative lap and torso belt routing approaches. Regression analyses quantify the critical importance of belt anchorage location for child belt fit, providing an important foundation for efforts to optimize belt geometry for children. The strong correlation between ATD and child belt fit scores means that ATD-based measurements can reliably be used to assess booster and vehicle designs with respect to child belt fit.National Highway Traffic Safety Administrationhttp://deepblue.lib.umich.edu/bitstream/2027.42/64459/1/102442.pd

    Validation of On-Orbit Methodology for the Assessment of Cardiac Function and Changes in the Circulating Volume Using "Braslet-M" Occlusion Cuffs

    Get PDF
    BACKGROUND: The transition to microgravity eliminates the hydrostatic gradients in the vascular system. The resulting fluid redistribution commonly manifests as facial edema, engorgement of the external neck veins, nasal congestion, and headache. This experiment examined the responses to modified Valsalva and Mueller maneuvers as measured by cardiac and vascular ultrasound in a baseline microgravity steady state, and under the influence of thigh occlusion cuffs (Braslet cuffs). METHODS: Nine International Space Station crewmember subjects (Expeditions 16 - 20) were examined in 15 experiment sessions 101 46 days after launch (mean SD; 33 - 185). 27 cardiac and vascular parameters were obtained under three respiratory conditions (baseline, Valsalva, and Mueller) before and after tightening of the Braslet cuffs for a total of 162 data points per session. The quality of cardiac and vascular ultrasound examinations was assured through remote monitoring and guidance by Investigators from the NASA Telescience Center in Houston, TX, USA. RESULTS: Fourteen of the 81 measured conditions were significantly different with Braslet application and were apparently related to cardiac preload reduction or increase in the venous volume sequestered in the lower extremity. These changes represented 10 of the 27 parameters measured. In secondary analysis, 7 of the 27 parameters were found to respond differently to respiratory maneuvers depending on the presence or absence of thigh compression, with a total of 11 differences. CONCLUSIONS: Acute application of Braslet occlusion cuffs causes lower extremity fluid sequestration and exerts proportionate measurable effects on cardiac performance in microgravity. Ultrasound techniques measuring the hemodynamic effects of thigh cuffs in combination with respiratory maneuvers may serve as an effective tool in determining the volume status of a cardiac or hemodynamically compromised patient in microgravity

    Quantification of Posterior Globe Flattening: Methodology Development and Validation

    Get PDF
    Microgravity exposure affects visual acuity in a subset of astronauts and mechanisms may include structural changes in the posterior globe and orbit. Particularly, posterior globe flattening has been implicated in the eyes of several astronauts. This phenomenon is known to affect some terrestrial patient populations and has been shown to be associated with intracranial hypertension. It is commonly assessed by magnetic resonance imaging (MRI), computed tomography (CT) or B-mode Ultrasound (US), without consistent objective criteria. NASA uses a semiquantitative scale of 0-3 as part of eye/orbit MRI and US analysis for occupational monitoring purposes. The goal of this study was ot initiate development of an objective quantification methodology to monitor small changes in posterior globe flattening

    Right Ventricular Tissue Doppler Assessment in Space During Circulating Volume Modification using the Braslet-M Device

    Get PDF
    This joint U.S. - Russian work aims to establish a methodology for assessing cardiac function in microgravity in association with manipulation of central circulating volume. Russian Braslet-M occlusion cuffs were used to temporarily increase the volume of blood in the lower extremities, which effectively reduces the volume returning to the heart in the central circulation. A novel methodology was tested on the International Space Station (ISS) to assess the volume status of crewmembers by evaluating the responses to application and release of the Braslet-on-occlusion cuffs, as well as to modified Valsalva and Mueller maneuvers. Baseline echocardiographic tissue Doppler imaging (TDI) of the right ventricular free wall with no Braslet applied shows early diastolic E' (16 cm/sec), late diastolic A' (14 cm/sec), and systolic (12 cm/sec) velocities compatible with normal subjects on Earth. TDI of the RV free wall with Braslet applied shows that early diastolic E' decreased by 50% (8 cm/sec), late diastolic A' increased by 45%, and systolic S' remains unchanged. TDI of the RV free wall approximately 8 beats after the Braslet was released shows early diastolic E' (8 cm/sec), late diastolic A' (12 cm/sec), and systolic S' (13 cm/sec) velocities. During this portion of the release, early diastolic E' did not recover to baseline values but late diastolic A' and systolic S' recovered to pre-Braslet values. The pre-systolic cross-sectional area of the internal jugular vein with Braslet off was 1.07 cm(sup 2) and 1.13 cm(sup 2) 10 min after the Braslet was applied. The presystolic cross-sectional area of the common femoral vein with Braslet off was 0.50 cm(sup 2), and was 0.54 cm(sup 2) 10 min after the Braslet was applied. The right ventricular myocardial performance Tei index also was calculated for comparison with typical values found in healthy subjects on Earth. Baseline and Braslet-on values for Tei index were 0.25 and 0.22 respectively. Braslet Tei indices are within normal ranges found in healthy subjects and temporarily become greater than 0.4 during the dynamic Braslet release portion of this study. Tissue Doppler imaging of the right ventricle revealed that the Braslet influenced cardiac preload and that fluid was sequestered in the lower-extremity interstitial and vascular space after only 10 minutes of application. This report demonstrates that Braslet application affects right ventricular physiology in long-duration space flight based on TDI and that this effect is in part due to venous hemodynamics
    corecore