
 
 
 

Right Ventricular Tissue Doppler Assessment in 
Space during Circulating Volume Modification 
using the Braslet-M Device  
 

D.R. Hamiltona, A.E. Sargsyana, E. M. Finckeb, S.H. Magnusb, Y.V. Lonchakovc, I.V. Alferovad, 

S.A. Dulchavskye, D. Eberta, K. Garciaa, D. Martina, V.P. Matveevc, Y.I. Voronkovd, S.L. 

Meltona, J.M. Duncanb, V.V. Bogomolovd  

 

a Wyle Integrated Science and Engineering Group, 1290 Hercules Ave, Houston, TX, 77058, USA 

b National Aeronautics and Space Administration Lyndon B. Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058, USA 

c Yuri A. Gagarin Cosmonaut Training Center (GCTC), Moscow Region, 141160, Russia  

d Institute for Biomedical Problems, Russian Academy of Sciences, 76-A Khoroshevskoye sh., Moscow 123007, Russia 

e Department of Surgery, Henry Ford Hospital, 2799 West Grand Boulevard Detroit, MI  48202, USA 

 

Abstract 
 

Introduction: This joint U.S. - Russian work aims to establish a methodology for assessing 

cardiac function in microgravity in association with manipulation of central circulating volume.  

Russian Braslet-M occlusion cuffs were used to temporarily increase the volume of blood in the 

lower extremities, which effectively reduces the volume returning to the heart in the central 

circulation.  A novel methodology was tested on the International Space Station (ISS) to assess 

the volume status of crewmembers by evaluating the responses to application and release of the 

Braslet-M occlusion cuffs, as well as to modified Valsalva and Mueller maneuvers.   

Results: Baseline echocardiographic tissue Doppler imaging (TDI) of the right ventricular free 

wall with no Braslet applied shows early diastolic E′ (16 cm/sec), late diastolic A′ (14 cm/sec), 
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and systolic (12 cm/sec) velocities compatible with normal subjects on Earth.  TDI of the RV 

free wall with Braslet applied shows that early diastolic E′ decreased by 50% (8 cm/sec), late 

diastolic A′ increased by 45%, and systolic S′ remains unchanged.  TDI of the RV free wall 

approximately 8 beats after the Braslet was released shows early diastolic E′ (8 cm/sec), late 

diastolic A′ (12 cm/sec), and systolic S′ (13 cm/sec) velocities.  During this portion of the 

release, early diastolic E′ did not recover to baseline values but late diastolic A′ and systolic S′ 

recovered to pre-Braslet values.  The pre-systolic cross-sectional area of the internal jugular vein 

with Braslet off was 1.07 cm2 and 1.13 cm2 10 min after the Braslet was applied.  The pre-

systolic cross-sectional area of the common femoral vein with Braslet off was 0.50 cm2, and was 

0.54 cm2 10 min after the Braslet was applied.  The right ventricular myocardial performance Tei 

index17,18 also was calculated for comparison with typical values found in healthy subjects on 

Earth.  Baseline and Braslet-on values for Tei index were 0.25 and 0.22 respectively.  Braslet Tei 

indices are within normal ranges found in healthy subjects and temporarily become greater than 

0.4 during the dynamic Braslet release portion of this study. 

Conclusions: Tissue Doppler imaging of the right ventricle revealed that the Braslet influenced 

cardiac preload and that fluid was sequestered in the lower-extremity interstitial and vascular 

space after only 10 minutes of application.  This report demonstrates that Braslet application 

affects right ventricular physiology in long-duration space flight based on TDI and that this 

effect is in part due to venous hemodynamics.   

Keywords: Hypervolemia, Space Flight, Fluid Shift, Microgravity, Venous Occlusion Cuffs, 

Braslet-M, Countermeasure, Echocardiography, Remote Guidance, International Space Station, 

Fluid Sequestration 

 



 
 
 
Introduction 

Alterations in gravity affect the cardiovascular system.  The acute redistribution of fluid upon 

onset of microgravity after launch is eventually compensated in the early adaptation period of 

space flight.1,7,13,15  These fluid redistributions usually reach steady state within a week of 

exposure and persist until the subject returns to Earth or a partial gravity environment.6  For 

long-duration microgravity missions, a thorough understanding of steady-state cardiovascular 

physiology and cardiovascular responses to interventions and disturbances (e.g., gravity change, 

volume overload, volume depletion) is important for planning of future long-duration 

exploratory missions and medical care. 

ISS crewmembers have the option of using the Braslet-M (Kentavr-Nauka, Moscow, Russia) 

occlusion cuffs to help ameliorate the acute adverse effects of weightlessness.  The Braslet is a 

set of elastic compression cuffs worn on the upper thighs, intended as countermeasures against 

the initial microgravity effects of blood pooling in the upper torso (heaviness and blood pulsation 

in the head), facial puffiness, nasal stuffiness, painful eye movement, and vestibular disorders 

(dizziness, nausea, vomiting).  They are intended to create artificial blood accumulation in the 

lower extremities, causing some of the circulating blood volume to relocate inferiorly from the 

upper body, presumably correcting the adverse hemodynamic effect of microgravity and 

improving the crewmember's working capability.  Braslet also has been used with the intent to 

“retrain” the cardiovascular system for the return of gravity forces after long-duration missions 

by inducing a hypovolemic state in space.  The actual Braslet compression cuff is a combination 

of alternating tensile and non-tensile elements, which when tightened creates elastic forces that 

produce the necessary radial pressure on the thighs.  The Braslet-M device is custom built and 

calibrated in a special preflight tilt-table procedure using subjective responses and rheographic 



 
 
 
data to determine the setting of the device that provides appropriate compression of the 

extremity. 

Recent advances in remote guidance techniques for ultrasound imaging on ISS have 

facilitated the acquisition of high-fidelity physiological and clinical data by non-medical 

ultrasound operators.  Using the existing ultrasound on the ISS (HDI-5000 ATL/Philips, USA) 

and the Russian Braslet-M occlusive elastic leg cuffs, the ability to measure the vascular and 

cardiac effects of the Braslet in space is possible.  This collaborative effort between NASA and 

the Federal Space Agency – Roscosmos was established to assess a subset of cardiovascular 

physiologic variables in microgravity. 

The goal of this case study was to validate and establish a robust ultrasound-based 

methodology and procedures for the assessment of right ventricular cardiovascular function in 

microgravity in association with the manipulation of the volume status of the subject.  This was 

accomplished through focused ultrasound tissue Doppler measurement before and after Braslet-

M application to acutely alter volume distribution.  

Methods 

Subject Selection  
Following informed consent, a volunteer crewmember (ISS Multilateral Space Medicine 

Board, Medical Disposition Category 1) who completed a comprehensive physical examination 

and screening cardiovascular assessment consisting of a resting ECG, maximum tolerance 

exercise stress test 2D-transthoracic echocardiogram, Holter monitor, Electron Beam CT for 

coronary calcium scoring, a large assortment of laboratory blood tests, and a clinical 

cardiovascular risk assessment was used as the study subject.   



 
 
 
Training 

The subject received 2 hours of ultrasound training approximately 4 months before launch 

(L-120).  These high-fidelity simulations were performed in vehicle mockups with hands-on 

instruction by an expert sonographer using a simulated flight control team.  All training was 

performed in the U.S. laboratory module Human Research Facility (HRF) simulator (Johnson 

Space Center – Houston) containng a flight-modified ATL HDI-5000 (Advanced Technology 

Laboratories, Seattle, USA) ultrasound system with the L12-5 and P4-2 probes.  The L12-5 

linear array probe was used to image peripheral vascular dimensions and internal jugular vein 

and artery parameters.  The P 4-2 phased-array probe has a very small footprint; hence its 

primary role is cardiac imaging.  Through a narrow aperture between ribs or infrasternal, it 

allows acquiring sector-shaped images with a field of view up to 22 cm in depth, which is ideal 

for imaging pericardial fluid and cardiac dynamics. 

For the simulations and on-orbit ultrasound exams,9 real-time streaming video of the 

ultrasound image with two-way audio communication was used.  Reference images were made 

available to the crew and were used as a means to aid the crew in acquiring the appropriate 

image.   

 

Calibration of the Braslet 

The Braslet-M device (Kentavr-Nauka, Moscow, Russia) was fitted for each crewmember 

before flight.  The device is initially sized according to the circumference of the subjects’ upper 

thighs just inferior to the groin.  The crewmember is placed on a tilt table in a 30 degree head-

down position.  Subjects become symptomatic within less than a minute with facial fullness, 

stuffiness, headache, and sensation of arterial pulses in the head.  The Braslet-M device is 



 
 
 
tightened to impede blood flow returning to the heart against a significant venous orthostatic 

gradient.  The effective mechanical occlusion pressure of the cuffs is provided by tightening or 

loosening a calibrated tension strap located on the lateral aspects of the thigh.  When the subject 

in the 30 degree head-down position reports relief from the initial symptoms with rheographic 

data agreement, the Braslet setting is recorded.  This tension strap setting is used for adjusting 

the Braslet on orbit.  Using a pressure transducer method by Hamilton et al 5,11 during a test 

Braslet calibration procedure (conducted at Johnson Space Center, Houston Texas), the 

occlusion pressure of the Braslet was found to be equivalent to an air-filled thigh cuff inflated to 

approximately 50 mmHg.   

 

On Orbit Data Acquisition Session: 
 

During on-orbit experiments, real-time video from the ultrasound was transmitted to Mission 

Control Center - Houston (MCC-H) using the ISS video subsystem.  Two-way private space-to-

ground audio was provided to an expert sonographer in MCC-H, who remotely guided the 

crewmembers through the Braslet scanning protocol, which typically takes 60 minutes to 

perform (See Figure 1).  

The subject and operator restraining techniques were coordinated with the sonographer on 

the ground.  Self-scanning techniques were primarily used on orbit.  Self-scanning provides self-

stabilization and no concern of the subject floating away from the operator in microgravity.  

When available, a second crewmember assisted with keyboard operations, which improved the 

efficiency and quality of data acquired through self-scanning. 



 
 
 

A unique feature of the remote guidance system is the equipment-specific reference cue 

card.  The card constitutes the basis of verbal information exchange between the operator and the 

expert, as it allows confident reference to and rapid identification of hardware elements and 

controls by the remote operator, time-saving localization of anatomic sites for initial placement 

of the transducer, and clear depiction of probe manipulation techniques.  Components of the card 

have at least double-redundant identification options, such as alphanumeric designation, position, 

and color.  

A timeline of cardiovascular measurements is illustrated in Figure 1 for the subject, 

including an echocardiographic examination in two-dimensional (2D), pulsed Doppler (PW) and 

tissue Doppler (TD) modes, as well as femoral (Fem) and jugular vein imaging (Jug).  The 

Braslet device was then applied for a short duration (~10 minutes) and measurements were 

repeated.  The Braslet was then released and the cardiovascular “recovery” process was 

monitored with similar measurements.  The timeline depicts modified Valsalva and Mueller 

maneuvers which were included in the protocol; however no data taken during these maneuvers 

is presented in this report. Right ventricular (RV) tissue Doppler indices were measured from the 

apical 4-chamber view with the sample volume positioned on the RV free wall immediately 

inferior to the tricuspid valve annulus.  The following parameters were measured; peak systolic 

velocity (S'), peak early (E'), and late (A') diastolic velocities.  Tissue Doppler Tei index was 

calculated by dividing the sum of the isovolumic contraction time and isovolumic relaxation time 

by the ejection time ((IVCT+IVRT)/ET).  Cross sectional areas of jugular and common femoral 

veins also were obtained. 

Results 
 



 
 
 
Tissue Doppler 

Echocardiographic TD images (TDI) of the right ventricular (RV) free wall from on orbit 

with no Braslet applied are seen in Figure 2.  These baseline data show early diastolic E′ (16 

cm/sec), late diastolic A′ (11 cm/sec), and systolic (12 cm/sec) velocities consistent with values 

on Earth.  TDI of the RV free wall from on orbit with Braslet applied for at least 10 minutes is 

seen in Figure 3.  These pre-Braslet release data show early diastolic E′ has decreased by 50% (8 

cm/sec) and late diastolic A′ increased to 16 cm/sec and systolic S′ remained unchanged.  TDI of 

the RV free wall from on orbit approximately 8 beats after the Braslet was released is seen in 

Figure 4.  These post Braslet release data show early diastolic E′ (8 cm/sec), late diastolic A′ (12 

cm/sec), and systolic S′ (13 cm/sec) velocities.  Early diastolic E′ did not recover to baseline 

values but late diastolic A′ and systolic S′ recovered to pre-Braslet values.  Figure 5 shows the 

TDI velocities of the right ventricular free wall before and after Braslet release with breathing 

resuming approximately 8 beats after the Braslet was released.    

 

Venous Cross Sectional Areas 

The pre-systolic (ECG R-wave) cross-sectional area of the internal jugular vein with Braslet off 

was 1.07 cm2 (Figure 6) and 1.13 cm2 10 min after the Braslet was applied (Figure 7).   The pre-

systolic cross-sectional area of the common femoral vein with Braslet off was 0.50 cm2 (Figure 

8) and 0.54 cm2 10 min after the Braslet was applied (Figure 9).       

Right Ventricular Tei Index 

Global right ventricular myocardial performance Tei index17,18 also was calculated for 

comparison with typical values found in healthy subjects on Earth.  The baseline (no Braslet) Tei 

index was 0.25, 0.22 after approximately 10 min of Braslet application, and 0.28 after an 

additional 10 to 15 minutes of Braslet application (just before Braslet release, as seen in Figure 



 
 
 
10).  Braslet release Tei indices in figure 10 are within normal ranges found in healthy subjects 

and temporarily become greater than 0.4 during the dynamic Braslet release portion of this study.   

 

Discussion: 

This case study used Braslet-M (Kentavr-Nauka, Moscow, Russia) occlusion cuffs to evaluate 

cardiac physiology in response to venous occlusion.  The Bralset-M is a Russian-made 

operational countermeasure already precalibrated and available on board for each ISS 

crewmember.  Although the utility of Braslet-M device use after 2 weeks of long-duration space 

flight is questioned, its short-term effects in the early adaptation period are less controversial.   

The International Space Station is a multilateral medical research environment with a broad 

range of experimental capabilities.  This particular multinational cooperative experiment 

required: 

1. Availability of an advanced multipurpose ultrasound imager on board as part of the ISS 

Human Research Facility (HRF). 

2. Substantial prior experience of the investigators with ISS HRF Ultrasound System. 

3.  Involvement of Russian experts with many years of experience with the Braslet-M 

device. 

4. Review of the procedures and protocols by the Human Research Multilateral Review 

Board. 

5. Thorough design, rehearsal, and execution of the procedures to verify the timeline of 

highly specific data acquisition schedules. 

6. Cooperation among the U.S. and Russian scientists – experts in cardiovascular 

physiology, imaging, and space physiology. 



 
 
 

This case study reports the use of tissue Doppler imaging in space and the short-term (less 

than 30 minutes) application of Braslet-M occlusive cuffs to evaluate any gross changes in right 

ventricular loading or venous volume changes in the neck and lower extremities.  This 

experiment was classified as procedure verification using the combination of the Braslet and 

HRF ultrasound and therefore preflight and postflight TDI data were not acquired.  Ground 

based simulations preceded the on-orbit experiments to rehearse the protocols and ensure 

adequate time allocation for each step of the procedure and to adjust the remote guidance tactics, 

discourse, and terminology with the crew.  These simulations confirmed the ability for crew to 

perform echocardiography using the developed ergonomic and remote guidance techniques.   

The results of this case study confirm the need to investigate the effect of the Braslet with a 

larger cohort of test subjects in space and on the ground.  Figure 1 illustrates the on-orbit 

experimental timeline, which shows that multiple echocardiographic modes were used to obtain 

more than 100 different echocardiographic and ultrasound indices and more than 2000 data 

points per subject per scanning session.   

Preliminary data analysis indicates that there are significant cardiovascular changes induced 

by the use of Braslet.  The echocardiographic data in this report were limited to tissue Doppler 

imaging (TDI) because it was the only imaging mode used to measure the RV free wall effects 

before, during, and after Braslet release.  The immediate physiological effects of the Braslet 

release occur over 10 to 30 seconds and the opportunity to switch imaging locations and modes 

was not possible, therefore TDI was chosen because it is the least dependent on cardiac loading.  

The right ventricle was chosen to measure the immediate changes in preload caused by the 

sudden release of the Braslet because there is very little on-orbit echocardiographic data 



 
 
 
published about this chamber and RV TDI indices give insight into the preload provided by the 

central venous system and the direct effects of Braslet. 

The resting pre-Braslet E′, A′ and S′ indices (Figure 2) were comparable to that seen in a 

similar cohort on Earth.  The subject had been on orbit for an extended period of time before the 

exam, therefore total body and vascular volume status are assumed to have been equilibrated to 

‘space normal’.  There is normally a 1- to 2-liter cephalad fluid shift from the legs (primarily the 

thighs) that takes place in the first 8 to 24 hours of space flight and remains until landing.19  This 

shift in fluid towards the heart is paradoxically accompanied by about a 5- to 7-mmHg decrease 

in central venous pressure (CVP) with no clinically significant changes in cardiac output.2,3  The 

bedside examination of the jugular venous pressure (JVP) on Earth is a reliable indicator of mean 

right atrial pressure and end diastolic right ventricular pressure because the vena cava acts as a 

venous hydrostatic column of blood.  Jugular venous distension is a normal response to space 

flight that persists throughout the mission and would not be helpful in determining changes in 

right atrial pressure and right ventricular preload.  Paradoxically, this test subject with a fully 

distended JVP would be considered hypovolemic by Earth standards yet euvolemic by 

microgravity standards.19  

In this particular study, we observed a 5.5% increase in venous distension with the Braslet 

applied (Figure 6 and 7) at end diastole (ECG R-wave).  This may occur because it takes very 

little pressure to completely distend the internal jugular vein, which is almost continually 

maximally distended in a crewmember on orbit.  Minor respiratory maneuvers such as speech or 

momentary breath holding could cause the observed increase.  For this subject, it appears that the 

application of Braslet does not produce hemodynamic changes significant enough to decrease 

jugular distension.  Therefore, using measurements of jugular dimensions as a means of 



 
 
 
determining central venous pressure and right ventricular preload in space is not a sensitive 

method.   

Significant changes in RV preload were seen by TDI.  TDI of the RV free wall from on-orbit 

with no Braslet applied is seen in Figure 2.  These baseline on-orbit data show early diastolic E′ 

(16 cm/sec), late diastolic A′ (14 cm/sec), and systolic (12 cm/sec) velocities that have been seen 

in normal populations on Earth.  This implies that the venous return in space is most likely 

similar to that seen on Earth despite the lack of a gravitational gradient and reduced fluid stored 

in the lower extremities.  This is likely due to the lower-extremity venous vascular system 

operating at a much lower volume point on its pressure-volume relationship curve, causing 

capacitance vessels to behave more like conduit vessels.  This would have minimal effect on 

venous return but it reduces the recruitable blood volume needed for response to acute volume 

changes that would cause cardiovascular stress and adrenergic venous constriction.  Muscle 

sympathetic nerve activity as a direct measure of sympathetic nervous system responses was 

found to be increased on orbit in six subjects in a study by Levine et al.14  Orthostatic intolerance 

is common when crewmembers return to Earth: after brief space flight, up to two-thirds are 

unable to remain standing for 10 minutes.  Previous research suggests that susceptible 

individuals are unable to increase their systemic vascular resistance and plasma noradrenaline 

concentrations above preflight upright levels.  The Levine study14 tested the hypothesis that 

adaptation to the microgravity of space impairs sympathetic neural responses to upright posture 

on Earth.  Muscle sympathetic nerve activity was higher postflight in all subjects, in supine and 

tilted positions.  A strong linear correlation between left ventricular stroke volume and muscle 

sympathetic nerve activity suggested that sympathetic responses were appropriate for the 

hemodynamic challenge of upright tilt and were unaffected by space flight, therefore Levine et 



 
 
 
al14 concluded that after 16 days of space flight, muscle sympathetic nerve responses to upright 

tilt are normal.  The relatively normal TDI seen in this subject, along with a minor increase in 

lower-extremity femoral cross section with the application of Braslet (approximately equivalent 

to 50 mmHg occlusion cuff pressure on the upper thigh) implies that the large conduit vessels of 

the venous system are almost fully distended despite the decrease in central venous pressure.2,3  

This result implies that RV preload can be maintained despite such low central venous pressures. 

Under normal circumstances RV preload can be measured by observing the height of the 

jugular venous pulse relative to the “sternal angle of Lewis” under normal gravity conditions.  

These pressures typically have been found to be 5 to 7 mmHg with high normal around 10 

mmHg relative to the right atrium.  With central venous pressures at 1 to 2 mmHg in space yet 

baseline TDI E′, A′ and S′ indices remaining normal seems to disagree with “Starling’s Law of 

the Heart.”  Hamilton et al found that the actual amount of transmural pressure required for 

normal human right ventricular diastolic filling is approximately 1.5 mmHg.5,10,11  Therefore, in 

order for right ventricular cavitary pressures to maintain normal diastolic filling seen in the 

baseline TDI of our subject in space implies that epicardial radial stress (pericardial pressure) 

must decrease by approximately 5 to 6 mmHg to less than 1 mmHg in space.10  

The pericardium is a thin fibrous sac that is relatively nondistensible compared to cardiac 

chambers when its total volume is greater than its unstressed volume.  The results of this case 

study imply that either the pericardial unstressed volume increased or LV end-diastolic volumes 

decreased to make room for the RV.  Earlier studies during Mir, Shuttle, and ISS (unpublished 

results from Hamilton) show that LV diastolic volumes were not significantly changed after total 

body fluid status reached a space normal level (after at least 1 month).  One possible explanation 

for this phenomenon is the caudal shift of the central diaphragm due to unopposed abdominal 



 
 
 
muscle tone, allowing the pericardial-diaphragmatic ligament to move superiorly and allow the 

pericardium to assume a more spherical shape compared to its terrestrial ellipsoidal shape.  This 

shift would allow the effective pericardial volume to increase with no change in surface area, 

resulting in an increased unstressed pericardial volume.  Further research on the ISS might 

confirm this theory, which would be useful for researchers who are attempting to model the 

behaviour of the cardiovascular system.  Current cardiovascular models do not compensate for 

the observations of normal diastolic filling and normal TDI indices in spite of decreased central 

venous pressure.  This deficiency in current models decreases their utility for space medicine 

physicians attempting to understand normal space cardiovascular physiology and 

pathophysiology. 

These right ventricular TDI results imply that high- or low-pressure pulmonary edema in 

space may not respond to pharmacological treatments that increase veno-vascular compliance.  

In these cases, the Braslet may pose an alternative treatment for acutely reducing right 

ventricular preload.   TDI of the RV free wall from on orbit with Braslet applied for at least 10 

minutes is seen in Figure 3.  These pre-Braslet release data show early diastolic E′ (8 cm/sec), 

late diastolic A′ (16 cm/sec), and systolic S′ (12 cm/sec) velocities.  Early diastolic E′ has 

decreased by 50% (8 cm/sec), late diastolic A′ has increased by 14%, and systolic S′ remains 

unchanged.  This indicates that although systolic velocity S′ is unchanged and internal jugular 

vein dimensions remain distended, the early diastolic filling velocities E′ are decreased with 

moderately increased late diastolic filling velocities (A′).  The diminished early diastolic preload 

seems to be compensated by the late contribution from atrial contraction.  Since the jugular vein 

is near-maximally distended, a diminished v-wave and increased a-wave will not be observed in 

space.  Therefore although RV early distending pressures and filling velocities were decreased 



 
 
 
with the application of the Braslet, the compensatory atrial contraction seems to be able to 

maintain cardiac output.  On Earth, test subjects who participated in the 30 degree head-down tilt 

Braslet calibration procedure and crewmembers who wore them shortly after launch reported a 

beneficial reduction in symptoms.  The diminished E′ seen with the application of the Braslet in 

our subject may be an indication of reduced CVP despite the distended jugular vein.  Before 

fluid volume equilibration during the first days of space flight, the pre-Braslet E′ may be higher 

than the control E′ seen in our long-duration subjects due to the relative fluid overload in the 

central circulation.   

TDI of the RV free wall from on orbit approximately 8 beats after the Braslet was released is 

seen in Figure 4.  These post-Braslet release data show early diastolic E′ (8 cm/sec), late diastolic 

A′ (12 cm/sec), and systolic S′ (13 cm/sec) velocities.  Early diastolic E′ has not recovered to 

baseline values but late diastolic A′ and systolic S′ have recovered to near pre-Braslet values.  If 

all the fluid sequestered in the lower extremities was stored in the vascular space, the rapid 

Braslet release would be expected to increase E′ and A′ dramatically until fluid distribution 

equilibrium is established.  One explanation for the slow recovery of the TDI indices after 

Braslet release could be that a significant portion of the fluid stored in the lower extremities was 

pushed into the interstitial compartments over the short 10-minute application.  An alternative 

explanation is that the short duration of Braslet application does not cause substantial fluid 

pooling in the lower extremities despite the reduction in symptoms reported by test subjects and 

crewmembers.  However, this explanation is not supported as evidenced by the alterations in TDI 

indices during Braslet application, as well as the dramatic changes seen during Braslet release.  

Figure 5 shows the TDI velocities of the right ventricular free wall immediately before and 

after Braslet release, with breathing resuming approximately 8 beats after the Braslet was 



 
 
 
released.  There is an acute and noticeable increase in TDI velocities upon Braslet release but 

they did not fully return to the pre-Braslet values.  Approximately 8 beats after the Braslet 

release, the normal respiratory variation of E′ and A′ and their effect on S′ is seen.  As the venous 

bed empties, E′ trends back to the ‘Braslet on’ pre-release values, causing A′ to increase to 

sustain S′.  This implies that E′ recovery to pre-Braslet values will occur when all interstitial 

fluid in the lower extremities returns to the vascular space.      

RV Tei Index17,18 was found to be similar to that found in healthy subjects of a similar age on 

Earth.  Baseline and Braslet-on values for Tei Index was 0.25 and 0.22 respectively.  The 

dynamic release of the Braslet (Figure 10) showed a temporary increase in Tei index to greater 

than 0.4, which normalized within 20 beats.  This normalization period, which is extended as 

compared to the recovery of E′, may have been caused due to the resumption of breathing.  The 

predominant factor in this increase in Tei index was the relative increase in IVCT, which may 

reflect the increased stroke volume secondary to the Braslet release.  Tricuspid 2D-Doppler and 

right ventricular chamber volume calculations will need to be measured in the future to confirm 

this.  

The Braslet has measureable effects on the cardiovascular system on orbit, which agree with 

the reported changes in physical exam and symptoms reported by test subjects and 

crewmembers.   

 

Conclusion 
A novel noninvasive methodology has been developed for cardiovascular system evaluation 

in conditions of space flight4,8,12,16 with an emphasis on using upper thigh compression for 

hemodynamic modification.  Preliminary results from this case study include echocardiographic 



 
 
 
and vascular ultrasound data from a single volume-stabilized long-duration space flight 

crewmember.  In association with the application and release of the Braslet device, this technique 

may provide a noninvasive means to manipulate vascular volume on orbit. 

This case study was a portion of a larger project directed at the development and validation 

of appropriate methodology for studying cardiovascular responses to disturbances (for example, 

gravity change, volume overload, hemorrhage and others) using existing ISS resources.  It is 

expected that this methodology will yield valuable physiological and operational data for 

planning and support of missions to the moon and other remote destinations.   

This activity will also aid in defining the on-orbit and ground resources needed to enable 

comprehensive cardiovascular research during future ISS increments.  In addition to 

investigating cardiovascular system physiology, a study of the safety, utility, and potentially new 

or expanded uses of the Braslet-M device is warranted.  This investigation is the first report of 

measurements of the effect of occlusion cuffs on the cardiovascular system on long-duration 

crewmembers and initial results suggest that they may be useful for acute or chronic volume 

manipulation for both terrestrial and on orbit medical purposes.  

TDI of the right ventricle revealed that the Braslet has an effect on preload and that fluid 

seems to be sequestered in the lower-extremity interstitial and vascular space after only 10 

minutes of application.  Further research is necessary, including whole heart imaging to more 

fully understand right heart physiology during long-duration space flight with or without venous 

occlusion. 
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Figure 1. A timeline of cardiovascular measurements taken from each 
subject 

 



 
 
 

 

 

Figure 2. Echocardiographic tissue Doppler image of the right ventricular 
free wall from on orbit with no Braslet applied.   

 



 
 
 
 

 

Figure 3. Echocardiographic tissue Doppler image of the right ventricular 
free wall from on orbit with Braslet applied for at least 10 minutes.   
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Figure 4. Echocardiographic tissue Doppler image of the right ventricular 
free wall from on orbit approximately 8 beats after the Braslet was released.   
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Figure 5. Echocardiographic tissue Doppler velocities of the right 
ventricular free wall (diamonds – S′, squares - E′, triangles – A′) before and 
after Braslet release with breathing resuming approximately 8 beats after the 
Braslet was released.  Braslet release is indicated by the blue-shaded area and 
breathing resumes 8 beats later as indicated by the purple-shaded area. 
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Figure 6. Pre-systolic (ECG R-wave) cross-section area of the internal jugular vein and common 
carotid artery before Braslet is applied. 

   
 
 
 
 
 
 
 



 
 
 
 

 
 
 
Figure 7. Pre-systolic (ECG R-wave) cross-sectional area of the internal jugular vein and 
common carotid artery 10 minutes after the Braslet was applied 

  
 
 



 
 
 
 

 
 
 
Figure 8.  Pre-systolic (ECG R-wave) cross-section area of the common femoral vein and 
common femoral artery before the Braslet is applied. 

 
 
 



 
 
 

  
 
 

 

 
 
 
Figure 9. Pre-systolic (ECG R-wave) cross-sectional area of the common femoral vein and 
common femoral artery 10 minutes after Braslet was applied. 

 
 
 



 
 
 

 
 
 
 

 
Figure 10. Tei index of RV global myocardial performance before and 

after Braslet release with breathing resuming approximately 8 beats after the 
Braslet was released.  Braslet release is indicated by the blue-shaded area and 
breathing resumes 8 beats later as indicated by the purple-shaded area. 
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